

Java Programming:

Basics to Advanced Concepts

Advanced Programming Workshop

Chris Simber

Assistant Professor, Computer Science

Rowan College at Burlington County

Cataloging Data

Names: Simber, Chris, author.

Title: Java Programming: Basics to Advanced Concepts

Advanced Programming Workshop

Subjects: Java (Computer Program Language)

Chris Simber

Assistant Professor of Computer Science

Rowan College at Burlington County

Author contact: csimber@RCBC.edu

This work is licensed under CC BY-ND 4.0. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nd/4.0/

mailto:csimber@RCBC.edu

Introduction

This book is intended for use in a programming course in Java for students

who are familiar with computer programming in another language such as

C++ or Python. It follows the flow of a standard text for a programming

language, with a focus on highlighting Java specifics and differences. This

means that it moves quickly from variables to multi-file, multi-window

advanced programming in a how to implement things in Java that they already

know perspective. The goal is to provide students with the differences that

can be expected when programming in Java, in addition to the capabilities of

the language.

The text is designed for instruction in a course in which students develop a

semester-long project in Java, but can be used for courses that require

multiple programs as well. The classroom format for the semester-long

project is a brief lecture followed by a collaborative or team workshop. An

example of a comprehensive project is provided in Appendix C and others

are available by request.

The examples within the chapters closely follow the coding standards for

Java publicized by W3C and set forth in the Java Coding Guidelines created

by Joe McManus MGR at Carnegie Mellon University, Software Engineering

Institute. An adequate abridgement of programming standards is included

in Appendix E. The examples reinforce the material introduced while

building on previous material covered. They provide the information

necessary to meet each milestone in the accompanying project

chronologically. Again, a comprehensive project is in view. For this reason,

there are no end-of-chapter reviews, summaries, or questions. However, the

chapter exercises are numbered for clarity using a shaded box, and can be

assigned to enhance instruction. Beginning in Chapter 5, the examples use

portions of various projects, and there are accompanying slides for

instruction.

The Java version in use at the time of this writing is Version 8. The Integrated

Development Environment (IDE) selected is Eclipse version 2019-06 which is

free to download and use. The Eclipse interface is common in look and feel to

most integrated development environments and is used extensively in

industry.

Instructions for obtaining and installing Eclipse are provided in Appendix A.

including resolving JRE and JDK issues.

Getting started in Eclipse is provided in Appendix B with a sample project

start-up program. Links to the Eclipse web site, Java Tutorials, and the Java

Coding Guidelines are included in Appendix D which also includes a link to

the W3Schools web site Java tutorial.

Acknowledgements:

Rowan College at Burlington County Student Feedback

Revision History:

Draft: June 2020

Draft (1); November 2020

First Edition: January 2020

Contents

Chapter 1 Java Programming & Process 1

Chapter 2 The Eclipse IDE 9

Chapter 3 Programming in Java 15

Chapter 4 Decisions, Logic, Loops, and Methods 25

Chapter 5 Interface Design and Development 33

Chapter 6 File Handling 49

Chapter 7 Strings, and ArrayLists 63

Chapter 8 Main GUI Design and Components 71

Chapter 9 Main GUI and Data Display 83

Chapter 10 Dates, Time, Sound, and More 101

Appendix A Installing Eclipse

Appendix B Getting Started with Eclipse

Appendix C Weather Data Analysis Project

Appendix D Helpful Links to Information

Appendix E Java Programming Standards

Appendix F Multiple Panels and Layout Managers Example

Appendix G Index of Programming Examples

“Five minutes of design time, will save hours of programming” –

Chris Simber

1

Chapter 1 Java Programming & Process

Chapter 1

Java Programming & Process

The Java programming language was initiated as a project in 1991 by James

Goslin, Mike Sheridan, and Patrick Naughton, and was originally designed for

embedded systems. With the introduction of web browsers, and the price

reductions and speed increases for computers in the 1990’s, Java developed into a

general-purpose programming language with the release of version 1.2 (Java 2)

in 1998. The current version is Java SE13 released in September 2019. Java is a

class-based, object-oriented language that is compiled to bytecode and runs on

any virtual machine.

JVM - The Java Virtual Machine (JVM) enables computers to run Java programs.

The JVM converts Java bytecode into machine language, manages memory, and

is part of the JRE. It allows Java programs to run on any device and operating

system.

JDK - The Java Development Tool-kit (JDK) is a development environment for

creating Java programs and applets that includes the Java Runtime Environment

(JRE), an interpreter, compiler, archiver, and documentation generator. There are

a variety of JDK’s for different operating systems and environments available.

JRE - The Java Runtime Environment (JRE) is an implementation of the Java

Virtual Machine that executes Java programs.

2

Chapter 1 Java Programming & Process

A second Language

It is recommended that programmers be proficient in a programming language,

familiar with others, and not be intimidated by any. Programming trends and

employment options warrant a broader knowledge in computing than a single

language or development environment provide.

Programming Trends

– Server side (cloud-like) 1980s

– Stand-alone executables 1980s thru present

• dramatic increase in available software

• evolution of interfaces

– Web applications 1990s thru present

– Cloud applications (server side) 1993 thru present

– All of the above Today

The extensive use of Graphical User Interfaces (GUIs) and network and internet

utilization including internet interfaces and transactions, have increased the need

for multi-language programmers. Maintaining existing programs in various

languages is a major area of the computer programming industry as well. For

example, FORTRAN has been used in math and science, COBOL for business

and finance, C and C++ in many areas, Java in web applications, and so on. At

the time of this writing there were approximately 250 programming languages in

use. Some of these have been and are used extensively, others not so much. Each

has benefits and limitations as well as a following, advocates, and critics.

Given some familiarity with programming (variables, functions/methods, classes

and objects, logic, flow of control, algorithm development, etc.), adapting to Java

should not be difficult.

As an example, a simple output statement in C++, Python, and Java. Note the

similarities.

 C++ cout << “This program computes …” << endl;

 Python print (‘This program computes …\n')

 Java System.out.println (“This program computes…”);

3

Chapter 1 Java Programming & Process

Here are a few examples of Java code along with comments for explanation.

// requesting and obtaining input, and storing it in a double variable

Scanner in = new Scanner (System.in);

System.out.println (“Enter temperature in Fahrenheit”);

double tempF = in.nextDouble();

// computation raising windSpeed to the 0.16 power using “Math.pow()”

double var1 = 35.74 + (Math.pow(tempF, 0.16)));

// displaying the variable var1 as formatted output in Java

System.out.printf(“The value computed is %.2f”, var1);

There are some similarities in the Java lines above with other languages

including data types for variables, the use of braces, two forward slashes for

comments, and semicolons as end of line markers. However, keyboard input

requires a scanner in Java and output requires some minor statement variations

depending on the type and formatting of the output. These and other similarities

and differences will be detailed and highlighted throughout the text.

The Agile Development Process and Design and Development

As with any language, increasing design time shortens development, testing, and

debugging time, and design tools typically utilized in other languages can be

used with Java: design documentation, pseudo-code, Story Boards, IPO (Input

Processing Output) documents, flow charts, UML diagrams, etc. I have often said

that “Five minutes of design time can save hours of development and

debugging”. This statement has proven to be true many times over.

Development cycle and IDE tools can be used as well including: text editors,

watch windows, error alerts, breakpoints, comments, and output statements.

Tools for software teams and software project managers vary in terms of process

and method, but are commonly used in industry to plan and measure project

progress and provide visibility into the design, schedule status, cost, and quality

of the code. The Agile Development Process is a popular method in use today.

Agile processes go by various names, but all are iterative and incremental

software methodologies that lend themselves to Java program development.

4

Chapter 1 Java Programming & Process

The most popular Agile Methodologies include:

• Scrum – regular meetings, periodic cycles called sprints

• Crystal - Methodology, techniques, and policies

• Dynamic Systems Development Method (DSDM)

• Extreme Programming (XP)

• Lean Development

• Feature-Driven Development (FDD)

The Scrum methodology is further explained in terms of sprints to align with the

milestone tempo of this text for project design and development.

A key component of the Agile Development Process is a sprint. Sprint meetings

occur periodically (usually weekly or twice monthly) and include a review and

planning event. Tasks completed from the previous sprint plan are reviewed,

and completed work may be demonstrated to clients for feedback and approval.

The tasks that were not completed from the previous sprint plan are reviewed

with a course of action (re-plan). The scope of work that will be completed

during the next sprint cycle is planned, and engineers are assigned to the tasks.

Agile Development Cycle

Requirements

Prior to the planning and design phase, a complete understanding of what the

program is supposed to do is needed. How it will do what it is supposed to do

will be determined as the design phase is completed during the software

development phase. Requirements decomposition is the act of discerning in

5

Chapter 1 Java Programming & Process

detail from the requirements what the program is to accomplish. This process

also assists in decomposing the project into manageable “chunks” in terms of

schedule and team assignment for development.

Design

As the requirements are decomposed and documented, the design phase begins,

and the break-down of required tasks and logical steps in the program are

developed. Design is a very important part of the software development cycle

because of the cost escalation of changes and bug fixes further on in the process.

This is highlighted in the chart below from the IBM Systems Sciences Institute.

Cost Increase of Fixing Errors by Phase

Software engineering tools that assist in this process include pseudo-code, and

flowcharts that graphically show the order of operations. Consider a program to

read data from a file, compute a value, and display the results. The pseudo-code

for the solution might be:

Step 1. Start the program

Step 2. Read data from the file

Step 3. Compute the value

Step 4. Display the output

Step 5. End of file reached?

– If No, go back to Step 2

– If Yes, go to Step 6

Step 6. End the program

6

Chapter 1 Java Programming & Process

The pseudo-code steps above do not include opening and closing the file. They

might be considered obvious steps in the process. The level of detail is subjective.

Rather than use a document, pseudo-code for portions of the program could be

typed into the text editor of the IDE as comments. Later, they can either be

replaced with actual code or kept in some form as a comment to the code.

Since we think in pictures and not text, a flowchart provides a faster and clearer

depiction of the algorithm and logic. If we are simply ensuring that we have a

robust algorithm and haven’t missed any steps, then flowcharts can be sketched

quickly on a piece of paper and discarded after the program is testing correctly.

If the flowchart will be used later, or is part of the deliverable product, then a

flowcharting application such as LucidChart could be used. It is common for

larger organizations to divide the design and development tasks into teams or to

subcontract the software development portion out-of-house. In these instances,

flowcharts are often required to be delivered to the development team or

subcontractor together with specific requirements for the code. A flow chart for

the example algorithm is shown below.

File Reading Flow Chart

7

Chapter 1 Java Programming & Process

Flowcharts can ensure that steps in the process haven’t been overlooked and that

there is a complete understanding of the operational flow of the program.

In object oriented programming, Unified Modeling Language (UML) diagrams

describe the class and attributes (member variables and methods). The Rectangle

example below employs the use of minus signs for private members and plus

signs for public. The member variables (top section) or attributes are followed by

a colon and the data type. The methods (bottom section) including constructors

are followed by parenthesis containing a name, colon and data type. If the

method returns a value as is the case with getWidth(), getLength(), and getArea(),

the method is followed by a colon and the data type of the return value.

UML Diagram

UML behavior, activity, object activity, or sequence diagrams are used to show

the flow of control, data, and transactions. UML Superstructure Specifications

provide a standard for object interaction depiction. The diagram below illustrates

the authentication of user activity with Login Id and Password.

Object Activity Diagram

8

Chapter 1 Java Programming & Process

The Sequence Diagram adds the chronological aspect.

Object Sequence Diagram

Object relationships can be depicted in many ways. The Class Diagram below

shows the static view of the program and the relationships. As an example, the

FileCondenser class uses the FileReader and FileEntry classes.

Object Sequence Diagram

Many software engineers use a combination of these tools to design and

implement solutions. Pseudo-code may be used for a high-level description of

the program or a program area, and a flowchart might be used for more complex

sections or compound conditional statements. Either way, the goal is to have a

comprehensive understanding of the requirements at every level to ensure that

the final product meets the requirements and produces accurate results.

9

Chapter 2 The Eclipse IDE

Chapter 2

The Eclipse IDE

Obtaining the Eclipse IDE is covered in Appendix A and should be downloaded

and installed prior to continuing. The Eclipse Integrated Development

Environment (IDE) is free to download and use, and is similar to most IDEs in

look-and-feel and capability. It is the most widely used IDE for Java

programming, and is suitable for starting out in Java as well as advanced

programming and collaboration. It is also used by many companies and provides

extensive functionality. The Eclipse version used in this text is 2019-06.

The Eclipse IDE

10

Chapter 2 The Eclipse IDE

The Eclipse IDE

Once Eclipse is installed and launched, there are several steps required to write a

program. Each program should be created as a project which enables Eclipse to

generate supporting files. A project is created using File | New | Java Project.

Appendix B walks through the steps required to create a Project, Package, and

Class to begin programming and includes screen captures for clarity. The “Quick

Start” steps are repeated here for convenience.

Eclipse – Quick Start

• Launch Eclipse, select the workspace folder from the list or create one

– Eclipse will start

• Close the Welcome window by clicking on the ‘X’, and the IDE will appear

• Select File | New | Java Project

– The ‘Create a Java Project’ box will popup

– Name the project, and the project will appear in the Package Explorer

• With the project name highlighted, add a Package by clicking the 'New Java

Package' icon, and give it a name.

• With the package name highlighted, add a class by clicking the ‘New Java Class’

icon, and the class creation window will popup.

• Give the class a name the same as the Source/Project name.

– Check the ‘public static void main(String[] args)’ box

• Click on the ‘Finish’ button

The creation of a project in the Workspace provides an area for the supporting

files for the program. The Hello World directory from the screen capture above

contains several files and folders as shown here.

Hello World Example Folder

11

Chapter 2 The Eclipse IDE

Code is written in the edit window, and standard output is displayed in the

Console area in the bottom section of the IDE.

Hello World Example Folder

Errors in a Java program in Eclipse are shown in several ways. Below, the

semicolon has been removed from line 7. The error is highlighted at the margin

with a red circle containing a white “x”, and at the location where the semicolon

should be there is a red wavy underline.

Hello World Example Edit Window

Hovering over either error indicator with the mouse will display a pop-up

message with suggestions for correcting the error. Care should be used when

selecting one of the suggestions to ensure that it is the desired solution. Often a

list of “Quick Fixes” will be shown that includes a variety of options.

12

Chapter 2 The Eclipse IDE

The screen capture below shows the suggestion displayed when the red circle

containing the white “x” is hovered over.

Hello World Example Error Information

The Package Explorer on the left side of the IDE lists projects and their packages,

and files associated with each project.

Hello World Example Package Explorer

The right hand side of the IDE contains the Task List and Outline panes.

Eclipse Task List and Outline Panes

13

Chapter 2 The Eclipse IDE

To run a program, click on the green circle with a white triangle inside.

The next time Eclipse is started, the Workspace that was used prior will be the

default Workspace to select. When selected, it loads into the IDE along with all of

the programs that have been created in that Workspace.

The programs will be listed in the Package Explorer and each file opened will

have a tab in the edit window which can be used to select the desired program.

 Eclipse Workspace

14

Chapter 2 The Eclipse IDE

The screen capture above shows four programs that have been created in the

same Workspace. Note the four tabs at the top of the edit window for the

programs, and the list of programs in the Package Explorer on the left.

Exiting Eclipse

To leave Eclipse, just close the program after saving any changes.

To save changes, choose "File" on the menu bar, and "Save" from the

drop-down menu or use Control-S.

Workspace information will be saved as the program shuts down.

The link to Eclipse.org (The Eclipse Foundation) and a direct link to tutorials are

copied here. These links and additional Java links are provided in Appendix D.

Eclipse.org

https://www.eclipse.org/

Eclipse User Guide

https://help.eclipse.org/2019-09/index.jsp

https://www.eclipse.org/
https://help.eclipse.org/2019-09/index.jsp

15

Chapter 3 Programming in Java

Chapter 3

Programming in Java

Comments

Single line comments in Java begin with two forward slashes, and are ignored by

the compiler. The Eclipse IDE used in this text will color code comments in green

font as the default. For multiline comments, a forward slash with an asterisk “/*”

begins the paragraph and an asterisk forward slash “*/” ends the paragraph. For

the Javadoc documentation generator, which creates HTML documents from

Java source code, the opening paragraph indicator is a forward slash and two

asterisks “/**” and it ends the same as the multiline comment.

Commenting Code

 // a single line comment in Java

 /* a multiline

 comment in Java

*/

/** A Javadoc comment for the document generator

*/

16

Chapter 3 Programming in Java

Displaying Output

The print function used to produce output in Java, requires “System.out” to

precede it to utilize the Java Utility Class System, out is an object of the System

class, and print is the Utility method name which sends strings to the console.

The argument passed to the print function contains the item or items to display

along with any format specifiers. Double quotes are used with string arguments

and depending upon the data type of other arguments, either a plus sign or

comma is used. Adding a line feed may change the print method used (explained

later) as does a format specifier as shown in the examples that follow.

Ex. 3.1 – Displaying Output in Java

System.out.print(“This is displayed.”); // displays This is displayed.

double num = 123.45; // assigns 123.45 to num

System.out.print(“Num is “ + num); // displays Num is 123.45

The format specifier and the printf method are used to format output, i.e. print

formatted. Two arguments are passed to the function: the numeric value or string

to be formatted and the format specification which is in quotes and begins with

“%”. Format specifiers include “f” (float), “d” (integer), and “s” (string). To set

the precision for the output, an integer is placed after the decimal in the specifier.

Ex. 3.2 – Formatted Output

 double num = 123/4; // Integer divided by integer

System.out.printf(“Num is %.3f“, num); // displays Num is 30.000

 double num = 123/4.0; // Integer divided by double

System.out.printf(“Num is %.3f“, num); // displays Num is 30.750

When a variable is the only argument, the format specifier is still within quotes.

System.out.printf(“%.2f“, num); // displays 30.75

17

Chapter 3 Programming in Java

To provide an amount of spacing to use for an item in the output, the number of

spaces is added before the decimal or before the designator if no decimal is used.

In this example, “%6d” allocates 6 spaces for the integer variable num.

int num = 123;

System.out.printf(“Num is %6d“, num); // displays Num is 123

When more than one variable is included in the output, the specifiers are

included in the string element in the order they are to appear in the output, and

the actual variables are included afterward as shown here.

System.out.printf(“Var1 %4.2f Var2 %4.2f“, firstVar, secondVar);

Note that the use of printf precludes the use of println. To display a line feed on

its own, println with no arguments can be used as shown below, or an escape

sequence can be inserted as shown in Ex. 3.4 below.

Ex. 3.3 – Line Feed

System.out.println(“A line feed after”) ; // adds a line feed after

System.out.println(); // output just a line feed

Escape Sequences

Java’s escape sequences include: new line “\n”, tab “\t”, print a double quote \”,

and to print a back slash “\\” two are used. The sequence is surrounded by

quotes. When println can’t be used because printf is being used, a line feed can be

inserted as “\n” anywhere a line feed is needed.

Ex. 3.4 – Escape Sequences

System.out.println(“Line feed \n mid-sentence.”); // line feed \n

System.out.println(variable1 + “\n” + variable2.”); // line feed \n

System.out.println(“A tab \t mid-sentence.”); // tab \t

System.out.println(“ \”quotes around.\” ”); // quotes \”

System.out.println(“Backslash” + “\\”); // backslash \\

18

Chapter 3 Programming in Java

Ex. 3.4 Escape Sequence Output

Ex. 3.4A – Formatted Output revisited

As shown in the lines above, string titles for the values are mixed with the format

specifiers for the values, and then after the closing quotes, the variables are

listed. The escape sequence “\n” is used for line feeds where needed. The output

is shown below.

Ex. 3.4A Program Output

Variables

In Java, variables are declared by data type, a single equal sign is the assignment

operator, and the variable being assigned the value is on the left side of the

operator.

variable = expression or value;

int userAge = 29; // userAge is assigned 29

19

Chapter 3 Programming in Java

The variable naming convention most used in Java is uppercasing. A single word

variable is all lower case, and a two word variable has the first word in lower

case and the first letter of the second word is uppercase. This aligns with W3C

(World Wide Web Consortium) as well as other guides and standards for the

language. Appendix E contains a short list of Java programming standards.

Java is case-sensitive, and variable names cannot be any of the key words (which

will be highlighted by the IDE) and cannot contain spaces. The first character

must be a letter or underscore and then letters, digits, or underscores can be

used. Software engineering principles and most standards dictate that

descriptive variable names be used to add clarity to the code.

The primitive (simple) data types in Java are not objects, and include byte, short,

int, long, char, float, double, and Boolean. A wrapper class is used for these.

Keyboard Input

To obtain keyboard input, Java uses a scanner from the scanner class which

requires importing the class java.util.Scanner. Import statements are entered

between the package and the class in the program as shown in Ex. 3.5 below.

import java.util.Scanner;

A Scanner object is declared as shown below. The line of code declares a Scanner

named “in”, assigns “in” a Scanner using “new”, and “System.in” is used for

obtaining input from the standard system input source (the keyboard).

Scanner in = new Scanner(System.in);

A Scanner can use various methods available to obtain input.

System.out.print(“Enter a number: “);

int myNum = in.nextInt(); // reads and assigns the integer

System.out.print(“The number entered was “ + myNum);

After the prompt to enter a number in the lines above, the program waits for the

Enter key to be pressed and then uses nextInt() to read the integer and assigns the

input to myNum. Note that nextInt() is looking for an integer and will fail if an

integer was not entered. Methods covered in Chapter 4 will resolve this issue.

20

Chapter 3 Programming in Java

The program below combines the statements covered and adds some output.

Note that the location of the import statement is between the package and the

class. The input for the example below is entered in the Console area where the

output appears. A mouse click in the console window gives it the input focus.

Ex. 3.5 – Getting Keyboard Input

Ex. 3.5 IDE Edit Window

Ex. 3.5 IDE Output Console

The following methods are used to obtain input for various data types.

int myNum = in.nextInt(); // reads an integer

double myDouble = in.nextDouble(); // reads a double

string word = in.next(); // reads up to white space

string line = in.nextLine(); // reads up to a line feed

Another way to handle user input of numbers is to read the input as a string and

then use Integer.parseInt() to convert the data type from a string to an integer.

21

Chapter 3 Programming in Java

 String numString = "32"; // assign “32” as string

 int intNum = Integer.parseInt(numString); // covert to integer and store

 intNum = intNum + 100; // used in an equation

 System.out.println("int num is :" + intNum); // displays int num is: 132

To covert a string to a double, Double.parseDouble() can be used.

numString = "123.45"; // assign “123.45” as a string

 double dblNum = Double.parseDouble(numString); // convert as double

 dblNum = dblNum + 100; // use in an equation

 System.out.println("dbl num is :" + dblNum); // displays dbl num is: 223.45

The code below fails and throws a NumberFormatException (shown below) and

does not complete because the parsing attempt fails (exceptions are covered in a

later chapter). Note the text in the display below.

 String badString = "bad"; // assign characters to badString

 int badNum = Integer.parseInt(badString); // parsing attempt fails

 badNum = badNum + 100;

 System.out.println("BAD num is :" + badNum);

NumberFormatException

Mathematical Expressions and Operators

Java operators typically align with other languages. Addition uses (+) and

subtraction (-), multiplication uses (*), division is (/), and the modulus operator is

(%). One difference is that exponentiation uses the Math.pow method from the

Math library.

22

Chapter 3 Programming in Java

Exponentiation Example

result = Math.pow(2, 3); // result is assigned 8, (23)

result2 = Math.pow(result, 2); // result2 is assigned 64, (82)

Division results are different for different data types and data type combinations.

If one of the values is a floating-point number, the result is a floating-point

number. If both numbers are integers as in the first example below, the result is

truncated to an integer. The decimal portion is discarded.

 System.out.println("10 / 3 is: " + 10 / 3); // displays 10 / 3 is: 3

 System.out.println("10 / 3.0 is: " + 10 / 3.0); // displays 10 / 3.0 is: 3.333…

 System.out.println("2.5 / 5 is: " + 2.5 / 5); // displays 2.5 / 5 is: 0.5

However, an integer divided by an integer results in a double if the variable it is

assigned to is declared as a double.

Division Examples

double result = 10 / 5; // result is assigned 2.0

double result = 10 / 5.0; // result is assigned 2.0

double result = 2.5 / 5; // result is assigned 0.5

For rounding numbers, Java has a Math.round() method that will round numbers

to an integer value even if assigned to a double. To assign the result to an integer,

the value must be cast to an integer shown below as (int).

double result = Math.round(9.4); // result is assigned 9.0

int result = (int)Math.round(9.6); // result is assigned 10

Precedence in Java is (PEMDAS) parenthetical expressions first, followed by

exponentiation, then multiplication, division, modulo division, and lastly

addition and subtraction. Operators with the same precedence are handled left to

right, and precedence can be forced using parenthesis.

Mixed-type expressions are promoted to the higher data type in use. In an

expression with an integer and float, the integer is temporarily converted to a

float, and the expression is promoted with a float as the result of the operation.

23

Chapter 3 Programming in Java

The same rule applies to an expression with an int and double. The expression is

promoted to double.

Math Methods

In addition to the pow() method, the java.lang.Math class contains methods for

performing mathematical operations including: abs(x), acos(x), asin(x), atan(x),

cos(x), hypot(x), log(x), sin(x), sqrt(x), and tan(x) among many others. Each requires

placing “Math.” in front of the method. The class also defines a value for pi using

Math.PI, and conversions for degrees to radians, Math.toRadians(x), and radians

to degrees, Math.toDegrees(x). Some examples follow.

 double var = Math.sin(1);

 System.out.printf("Sin(1) in radians: %2.5f", var);

double radius = 2.0;

System.out.printf(“\nArea is: %.5f”, Math.PI * (Math.pow(r,2)));

The output for these lines is:

Sin(1) in radians: 0.84147

Area is: 12.56637

Random Numbers

Java includes random number generation within the Math class that returns a

positive double from 0.0 to 1.0 inclusive.

Ex. 3.6 – Math Methods – Random Numbers

 double r = Math.random(); // r is assigned a random number

System.out.println(“r is “ + r"); // displays r is 0.425314497434798

 double ran;

 for(int i = 0; i < 3; i++) {

 ran = Math.random(); // ran is assigned a random number

 System.out.print(ran + " ");

 }

24

Chapter 3 Programming in Java

The random number can be manipulated to handle various requirements. A

situation needing a random number between 1 and 100 inclusive requires

eliminating zero, and adjusting the random number. In Ex. 3.7, the random

number is multiplied by 10 and then it is cast to an integer and 1 is added to

eliminate zero. In the second example, the number is multiplied by 100 with 1

added to produce a random number between 1 and 100.

Ex. 3.7 – Random Number Ranges

 int num = (int) (Math.random() * 10) + 1; // number between 1 and 10

 System.out.println(“num is “ + num); // displays num is 9

 int randInt = (int) Math.random() * 100) + 1; // number between 1 and 100

System.out.print(“randInt is “ + randInt); // displays randInt is 62

The following generates a random number between some minimum and

maximum.

 int rn = (int) Math.random() * ((max – min) + 1) + min);

Constants

Constants in Java are declared using the final key word and all uppercase letters

with underscores between words.

final double EARTH_RADIUS = 3959.0;

 double earth_circumference = 2 * 3.1415 * EARTH_RADIUS;

Global Variables

The use of global variables is frowned upon in all languages including Java. The

language doesn’t explicitly have them since every static variable must belong to a

class. However, once a variable is in a class, it can be accessed across all class

instances.

25

Chapter 4 Decisions, Logic, Loops, and Methods

Chapter 4

Decisions, Logic, Loops, and Methods

If, else, and else if

The Java syntax for the IF statement uses parenthesis to surround the conditional

statement, and braces to enclose the statements executed when the condition is

true. Many Java developers and IDEs place the opening brace on the line with

the condition which aligns with most Java standards and is followed in this text.

Condition Examples

if (condition) {

statement1;

statement2;

 }

The ELSE condition has no conditional statement.

if (condition) {

statement(s);

 }

else {

statement(s);

 }

26

Chapter 4 Decisions, Logic, Loops, and Methods

For an ELSE IF condition, the format follows the IF format.

if (condition_1) {

 statement(s);

}

else if (condition_2) {

 statement(s);

 }

else if (condition_3) {

 statement(s);

 }

else {

 statement(s);

 }

Ex. 4.1 – Conditional Example with x = -1

 if(x > 1) {

 System.out.println(“x is positive.”);

 }

 else if (x < 1) {

 System.out.println(“x is negative.”);

 }

 else {

 System.out.println(“x is zero.”);

 }

The output of this code would be: x is negative.

Validating Input

In the last chapter, nextInt() and other input methods were introduced with a

caution that they will fail if the value is not the expected data type. To ensure

27

Chapter 4 Decisions, Logic, Loops, and Methods

that it is, there is a method hasNext() that looks ahead first before the program

tries to read and store the value.

Since nextInt() is attempting to read an integer, the way to ensure that an integer

has been entered is to look-ahead into the input to see if an integer is there to

read. The method hasNextInt() provides this ability and returns a Boolean based

on the next input. In this example, the Scanner was declared as “in”.

if(in.hasNextInt()) { // returns true or false

int myNum = in.nextInt(); // read the integer

}

To test for a double before assigning it to a variable, use hasNextDouble(), the

hasNext() method checks for any item, and hasNextLine() tests for a line.

Boolean Logic and Relational Operators

Boolean Logic and relational operators in Java are similar to other languages, and

resolve to either True or False. The operators function as follows:

> greater than

< less than

>= greater than equal to

 <= less that equal to

 = = two equal signs without a space for equivalence

 != not equivalent

Strings cannot be compared using equivalence operators. The member function

string.equals() is used. Chapter 7 covers strings and their methods.

The logical operators are “&&” for AND, “||” for OR, and “!” for NOT, and the

IDE will color code these for clarity. Short circuit evaluation is also used as in

other languages; meaning in a logical and condition, if the left expression is false,

the right expression is not evaluated. In a logical or condition, if the left

expression is true, the right expression is not evaluated.

28

Chapter 4 Decisions, Logic, Loops, and Methods

Logic Operator Example

value > 0 && value < 20 // logical AND

value < 0 | | value > 100 // logical OR

Boolean variables are also available in Java as the boolean data type which

operates as true or false.

boolean boolValue = true; // declares a boolean

Repetition Structures (Loops)

Repetition structures follow the brace and indentation rules associated with

conditions. A condition for the loop is enclosed in parenthesis and braces form

the block of code executed when the condition is true. Indentation of the

statements adds clarity. A WHILE loop example follows.

while (condition) {

statement1;

statement2;

}

The Java FOR loop follows the standard practice with the initialization,

condition, and update on one line.

for (int var = 0; var < someValue; var++) {

statement(s);

 }

Java SE 5 introduced the enhanced for loop (aka for-each loop) which accesses each

element and places a copy of the value in a temporary variable for use in the

loop. Note that it is a copy and any changes would not affect the actual variable.

int [] values = {5, 10, 15, 20, 25};

for (int x : values) { // each item in values is copied into x

 System.out.print(x);

}

29

Chapter 4 Decisions, Logic, Loops, and Methods

 Java also provides a DO WHILE loop.

do {

statement(s);

 }

 while (a condition is true);

Methods

Methods (functions) in Java follow the precepts in most other languages. The

return data type is included in the method header, and parameters require data

types and are received in the order in which they are passed.

The main section of the program in the IDE is itself a method, and is the entry

point for the program. This is where execution begins. The header for the main

method contains modifiers and definitions as follows:

public static void main(String[] args)

public – an access modifier that defines that this method is accessible by any

class.

static – a key word that defines the method as class related and not instance

related. It is not associated with an object.

void – does not return a value.

main – the name of the method. Main is searched by the JVM as a starting

point for an application written in Java.

String [] args – the parameter to the main method.

The following is a simple method that computes the average of three numbers.

The method is public, it is static (not associated with an instance of an object), it

returns a double, and it receives three doubles as parameters.

public static double average (double x, double y, double z) {

 double value = (x + y + z)/3.0;

 return (value);

}

30

Chapter 4 Decisions, Logic, Loops, and Methods

A complete program that uses a Scanner to obtain three values from the user,

and passes them to the method is shown in Ex. 4.2 below. Recall that creating the

program requires creating a project, class, and package. The method is inside the

class but outside of the main method. Line numbers are included for explanation.

Ex. 4.2 – A Simple Method called from main

1. public class Average

2. { // method that computes average

3. public static double average (double x, double y, double z) {

4. double value = (x + y + z)/3.0;

5. return(value);

6. }

7.

8. public static void main (String [] args) {

9. Scanner in = new Scanner(System.in);

10.

11. System.out.print(“Enter three numbers”);

12. double a = in.nextDouble();

13. double b = in.nextDouble();

14. double c = in.nextDouble();

15.

16. double avg = average(a, b, c); // method call

17.

18. System.out.print(“The average is: “ + avg);

19. in.close();

20. }

21. }

In the program above, line 8 begins the main method where execution begins

and line 9 declares a scanner for use in obtaining user input. Lines 11 through 14

prompt for user input and store the values in three variables (a, b, and c). The call

to the method on line 16 passes the values of the three arguments (a, b, and c)

and assigns the return value of the method to avg. The method on line 3 receives

the parameters as x, y, and z, computes the average and returns the computed

value on line 5. Indentation and braces highlight that the method is inside the

project’s class, and is separate from main.

31

Chapter 4 Decisions, Logic, Loops, and Methods

Ex. 4.2 Output

The method naming convention in Java is the same as the variable naming

convention. The first word is all lower case and the first letter of the second word

is uppercase. Some languages prefer underscores in function/method names to

differentiate them easily from variables. This has not carried over to Java.

Header examples for various methods

 public static int mySum (int x, int y) // returns an integer

 public static String myString (String s1, String s2) // returns a String

 public static boolean myString (int x, int y) // returns True or False

public static void myOutput (double y) // void, returns nothing

Methods Cannot Return or Change Multiple Values

Java does not allow pass-by-reference and cannot return multiple values from

methods. Methods are used to break a complex problem into smaller, simpler

problems and should implement a limited number of operations and return one

value or no value at all. Java is an Object Oriented Language (most are) and

Objects tend to contain multiple methods, each of which has a single task.

Given that much of Java programming involves graphical user interfaces,

components can be used to obtain multiple values from users. These will be

covered in later chapters on GUIs. In addition, ArrayLists also covered later, can

be changed by methods.

Methods in Other Files

When a method is in another class file, and that file is part of the project package,

the method call includes the class name containing the method (see Appendix B).

The following package contains two files with a method call from the first to the

second. The package explorer below shows the two files.

32

Chapter 4 Decisions, Logic, Loops, and Methods

Ex. 4.3 Package Explorer

As shown below, the method call from main to getSquaredVal() includes the

second file’s class name followed by the dot operator and name of the method.

Ex. 4.3 – Method in a Second File called from Main

 package CH_4_TwoFiles_Package;

 public class CH_4_TwoFiles {

 public static void main(String[] args) {

 double num = 3;

 double valSquared = CH_4_TwoFiles_Other_File.getSquaredVal(num);

 System.out.println("The squared value is " + valSquared);

 }

 }

// the code located in the other file

 package CH_4_TwoFiles_Package;

 public class CH_4_TwoFiles_Other_File {

 public static double getSquaredVal(double val) {

 double squaredVal = val * val;

 return squaredVal;

 }

 }

Ex. 4.3 Output

If the method were in another package, the package and the class would be

imported.

33

Chapter 5 Interface Design & Development

Chapter 5

Interface Design & Development

Graphical User Interfaces are event driven by user input. That is, the user

determines the sequence of many of the events; therefore careful design is

required to control access to the events. If the click of a button computes a result

that requires user input first, the button should either not be enabled until the

user has input the required value, or clicking it must produce an error window

that alerts the user and takes them back to the entry control. Situations like this

need to be considered in the design phase of the interface which adds an

engineering consideration for input validation in the program. The value must be

entered by the user before allowing computation, and the value entered must be

within the correct range of values for the computation to avoid issues such as

division by zero.

Consider a program that computes the circumference of a circle based on an

input of radius.

1. The radius must be input prior to computation

2. The radius input by the user must be a number

3. The radius input by the user must be a positive number

The graceful handling of incorrect input values is required for a well-engineered

solution. In a non-GUI program, a loop might be used that iterates until a correct

value is entered. The same concept holds true for a GUI program, but with the

added requirement of employing controls to handle the tasks. This situation will

34

Chapter 5 Interface Design & Development

be explored later. Generating the entry or initial GUI is the first step. This

requires generating a window and placing some components (controls) on it.

Java is well suited as a language for creating graphical user interfaces. Many Java

packages and libraries contain components that are easy to use. The javax.swing

package and Abstract Window Toolkit (AWT) provide buttons, frames, labels,

panels and more to develop user friendly interfaces.

The AWT was Java's first package for creating Graphical User Interfaces (GUIs).

It was available in Java 1.0 in 1996, and uses a peer approach, in that each Java

control or component has a corresponding component in the windowing system

where it is running. Since some windowing systems have different components,

only those that are common were included.

The swing components on the other hand are part of Oracle’s Java Foundation

Classes which provide a user interface for Java programs. It is much more

extensive than AWT and matches the look and feel of various platforms.

Some of the Java swing components include:

Button causes an action or event when clicked

Checkbutton On or Off position check boxes

 TextArea display area for text

TextEntry single line entry component

Frame rectangular area for graphics

Label component that displays text

Listbox user selection list

Menu list exposed when a menu button is clicked

Panel rectangular area for frames and components

Radiobutton select/deselect component

Before selecting components, a preliminary design should be completed either

on paper or using an application. This provides a layout for the window and an

idea of how it will look and operate prior to writing any code that may need to

be changed later. Storyboarding (walking through program operation step-by-

step as the user) can also be helpful at this stage. The examples in this chapter

build portions of Weather Data Project which is included in Appendix C.

35

Chapter 5 Interface Design & Development

The Initial Window

The example project requires an initial window with three buttons: Login, Create

Account, and Cancel. This is the entry point for the user, and a “first sketch” of

the window might simply include a window and the three buttons.

Since the opening or initial window is the first impression of the program for the

user, an improved sketch might include a program title and a graphic that

reflects the nature of the program.

Ex. 5.1 – Example Sketch of initial GUI

Initial GUI Sketch

To create an initial GUI with a title, a graphic, and three buttons, a window could

be generated (covered later), however Java provides dialog boxes with a variety

of features that can be used easily as well. Since the window simply obtains what

the user would like to do, a dialog box might be adequate.

In the dialog box statement shown below, the first argument (specification) is the

parent window (null in these examples). Note: hovering over the dialog type

(showMessageDialog) in the IDE displays the specifications which are available for

each dialog including showInputDialog() which can be used to obtain input.

36

Chapter 5 Interface Design & Development

Error dialog that displays the message, “Error”:

JOptionPane.showMessageDialog(null, "Error", "Error",

JOptionPane.ERROR_MESSAGE);

Information dialog with the options yes/no and the message “Continue?”.

JOptionPane.showConfirmDialog(null, "Would you like to continue?",

“Continue?”, JOptionPane.YES_NO_OPTION);

The initial GUI in the example requires a title, a graphic, and three buttons: Create

Account, Login, and Cancel. A showOptionDialog() solution is shown below.

Ex. 5.2 – Initial Window Using a Dialog Box - showOptionDialog

The code to generate this dialog is shown below with line comments for clarity.

Object[] options = {"Cancel”, Create Account", "Login"}; // choices for the dialog

int selection = JOptionPane.showOptionDialog(null, // null (parent window)

 "\n Weather Data Analysis\n\n\n", // text inside dialog

 "Weather Data Analysis Program", // text on the border

 JOptionPane.YES_NO_CANCEL_OPTION, // option type of dialog

 JOptionPane.QUESTION_MESSAGE, // message type

new ImageIcon("cloudWind.png"), // the image

 options, // the options (button labels)

 options[2]); // initial button focus (login)

In the code above, a list of options (the choices) is created to be passed as the

seventh argument. The integer “selection” is declared to store the return value of

the dialog. The arguments to the dialog begin with a “null.” This is the entry to

the program and no other window is open so there is no parent window. The

37

Chapter 5 Interface Design & Development

next argument is the text inside the dialog followed the text on the border. The

next argument is the option type for the dialog followed by the message type.

The next argument is the icon chosen to replace the default icon, and then the list

of options. This list overrides “Yes”, “No”, and “Cancel”. The final argument is

the button that receives the focus as shown by the dotted rectangle inside the

“Login” button. Pressing enter will select that button.

To react to the button clicked by the user, the variable “selection” that receives the

return from the dialog can be used in a conditional statement as shown here.

Ex. 5.3 – Dialog Box Button Selection

 if(selection == 1) // Create Account button chosen

 {

 System.out.println("Create Account");

 new createAcctWin(); // create the window

 }

 else if(selection == 2) // Login button chosen

 {

 System.out.println("Login");

 new loginWin(); // create the window

 }

 else

 System.out.println("Cancel"); // Cancel button chosen

In the example, the variable selection is used to determine where program control

goes next. If the user selects “Create Account”, then a window to obtain the

username and password would be created. If the “Login” button is clicked, that

window is created.

The next section shows how to create a simple frame as a precursor to a complete

interface window.

Creating Windows (Frames)

In the example below, a window (frame) is generated using a JFrame which is a

container in Java that can hold components.

38

Chapter 5 Interface Design & Development

Ex. 5.4 – A Simple Window

1. // This program creates a simple window.

2. public static void main (String[] args) {

3.

4. JFrame myFrame = new JFrame();

5. myFrame.setSize(300,400);

6. myFrame. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

7. myFrame.setVisible(true);

8. }

The program above creates the frame shown below.

Line 4 creates an instance of a JFrame and assigns it to myFrame.

Line 5 sets the initial size of the frame.

Line 6 sets the default close operation to exit so that if the window is closed the

program ends. See the end of chapter 9 for more information and other options.

Line 7 makes the frame visible.

A Simple Window Program

To include components and capabilities, instead of just creating an instance of

the JFrame class, inheritance is used and the JFrame class will be extended.

Inheritance allows the new class to inherit all of the members of the JFrame class

39

Chapter 5 Interface Design & Development

such as setSize() and the other methods, and to include additional components

and functionality (extending it). A simple example that declares a class for a

frame follows.

Ex. 5.5 – A Simple Window class

1. public class SimpleWindow extends JFrame {

2.

3. public SimpleWindow() // Constructor

4. {

5. JFrame myFrame = new JFrame;

6. myFrame.setSize(300,400);

7. myFrame.setVisible(true);

8. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

9. }

10.

The lines above create a class SimpleWindow using a JFrame. The initial size of the

frame is set using setSize(), and the close operation ends the program should the

user close the window.

To create an instance of this class, main would include a call to the constructor as

shown below. An instance of a SimpleWindow is created and is assigned to

myWin.

 public static void main (String [] args) {

 SimpleWindow myWin = new SimpleWindow();

 }

 } // end of class SimpleWindow

Adding Components

Developing the Create Account window and the Login window with text entry

components and buttons will require not only creating the window and the

components, but positioning them in the window. Positioning them is made

easier with the use of a layout manager.

40

Chapter 5 Interface Design & Development

Generating the Create Account and Login Windows

The Create Account and Login windows will both require prompts and text

entry by the user as well as buttons. The layout for the two windows will be

similar, but both will be generated as GUIs. To create interfaces, Java includes

additional components and layout managers that provide ways of locating and

positioning components in windows. Each of the layout managers listed below

has benefits and limitations. Others have been introduced in JavaFX which is still

maturing.

Java Layout Managers

 BorderLayout

 BoxLayout

 CardLayout

 FlowLayout

 GridBagLayout

 GridLayout

 GroupLayout

 SpringLayout

The GridBagLayout manager is used in this example to demonstrate the

flexibility it provides including the ability to locate components in rows and

columns (cells) with constraints and instance variables to tailor positioning.

Appendix F demonstrates the use of multiple layout managers.

Some of the instance variables for use with GridBagLayout include:

 gridx positioning in a column

 gridy positioning in a row

gridwidth specify the number of columns for the grid

gridheight specify the number of rows for the grid

ipadx, ipady internal padding for a component

insets external padding around a component

anchor positions a component within a cell

weightx, weighty determines row and column space distribution

41

Chapter 5 Interface Design & Development

The following example uses some of the specifiers listed above. The code below

creates a JFrame (window) with a border title, a JPanel with a GridBagLayout to

locate components, three JLabels with their output text, two JTextFields that are

10 characters wide to obtain user input, and a JButton to click when the user is

finished. The names of the components are in italics for clarity.

Ex. 5.6 – Create Account GUI

1. public class CreateAcct extends JFrame {

2. JFrame createAcctGUI = new JFrame("Weather Data Program");

3. JPanel createAcctPanel = new JPanel(new GridBagLayout());

4. JLabel userNameLabel = new JLabel("Enter a User name: ");

5. JLabel passWordLabel1 = new JLabel("Create a password…: ");

6. JLabel passWordLabel2 = new JLabel("upper case letter …: ");

7. JTextField textFieldUserName = new JTextField(10);

8. JTextField textFieldPassword = new JTextField(10);

9. JButton createAcctButton = new JButton("Create Account");

In the continued code below, line 10 begins the constructor which adds and

positions components. The initial size of the frame is set on line 11, an instance of

constraints for the GridBag is created on line 12 called con, and insets for spacing

are on line 13 and are ordered Top, Left, Bottom, and Right. Lines 15 through 17

set the location for the UserNameLabel, and line 18 adds it to the panel.

10. public CreateAcct() { // constructor

11. createAcctGUI.setSize(500,300); // width then height

12. GridBagConstraints con = new GridBagConstraints();

13. con.insets = new Insets(1, 1, 1, 1); // Top, Left, Bottom, Right

14.

15. con.gridx = 0; // set the column constraint to 0

16. con.gridy = 1; // set the row constraint to 1

17. con.anchor = GridBagConstraints.WEST; // Left align

18. createAcctPanel.add(userNameLabel, con); // add the label

19.

20. con.gridx = 1; // set the column constraint to 1

42

Chapter 5 Interface Design & Development

21. con.anchor = GridBagConstraints.EAST; // Right align

22. createAcctPanel.add(textFieldUserName, con);// add entry field

23. textFieldUserName.setHorizontalAlignment(JTextField.RIGHT);

Lines 20 and 21 locate the text entry component. Since the gridy specification for

this component is also 1, it is not set. In fact once constraints are set, they effect

all components after them unless they are changed. Line 22 adds the text field to

the panel, and line 23 sets text field alignment to right for user entry.

Setting the grid locations of the other components for the window, as well as

adding them to the panel would be the same as the lines above except for the

actual grid settings. The final lines in the code shown below add the panel to the

frame, set resizablity to false so that the user cannot stretch the window (which

would skew the positions of the components), set the location of the window

relative to null since no other window is open, and make the frame visible.

createAcctGUI.add(createAcctPanel); // adds the panel to the GUI

createAcctGUI.setResizable(false); // precludes resizing

createAcctGUI.setLocationRelativeTo(null); // initial window location - centered

createAcctGUI.setVisible(true); // make it visible

The completed code generates the window below.

Ex. 5.6 Create Account GUI

The password input can be hidden with passwordField.setEchoChar(‘*’); with a

JPasswordField which allows editing a single line of text while indicating

something was typed without showing the original characters.

43

Chapter 5 Interface Design & Development

One addition to the panel that provides some esthetic qualities is a frame border.

The Java BorderFactory provides beveled, compound, raised borders, and many

others. Code for the etched, titled border in Example 5.6 is shown below.

createAcctPanel.setBorder(BorderFactory.createTitledBorder(

BorderFactory.createEtchedBorder(), "Weather Data Program -

Create Account"));

Appendix F includes an example that combines layout managers.

Action Listeners

Once the user has entered a user name and password, reacting to the button click

to create an account requires an event listener object for the event source. In this

case an actionlistener for the button is used. The listener can be an ActionListener,

ButtonListener or public Interface ActionListener. The instructions processed are the

actionPerformed(). A public interface ActionListener example is shown here.

public interface ActionListener {

 void actionPerformed(ActionEvent event);

}

Event handling classes are in the java.awt.event package. The lines below declare

a listener class. The program constructs an object of the class and adds it to the

button. A ClickListener example is shown below.

public class ClickListener implements ActionListener {

 void actionPerformed(ActionEvent event) {

 System.out.println(“The button was clicked.”);

 }

}

This code constructs the object and adds it to the button.

ActionListener myListener = new ClickListener();

button.addActionListener(myListener);

44

Chapter 5 Interface Design & Development

Subclass ActionListener

In most cases, a ButtonListener that is a subclass of the GUI is more appropriate.

The Create Account example will use this implementation. The listener will get

the input from the user and verify the input to create an account. If the password

does not meet the criteria, an error should be indicated and the window should

remain open to obtain another password.

A listener implementation that is common for components uses an inner class

(subclass) implementation. In the example, the code below would be inside the

class that implements the Create Account window.

1. class ButtonListener implements ActionListener {

2.

3. public void actionPerformed(ActionEvent e) {

4.

5. System.out.println("Button clicked");

6. String uName = textFieldUserName.getText();

7. String pWord = textFieldPassword.getText();

8. // code to validate the input for account creation would go here

9. createAcctGUI.dispose();

10. }

11. };

12. createAcctButton.addActionListener(new ButtonListener());

13. } // end of constructor

14. }; // end of class

In the code above, line 1 declares the class. The reserved word implements,

declares an interface for the listener. Line 3 is the method that will be executed

when the button is clicked. Lines 5 is an output statement for testing, and lines 6

and 7 extract the text entered by the user from the JTextFields. Line 8 shows

where code or method calls would go to validate the input from the user, and

line disposes of the window if the account is validated. Line 11 ends the subclass

and line 12 creates an instance of the button listener object. Line 13 is the end of

the constructor for the window, and line 14 is the end of the class. Lines 13 and

14 are displayed to highlight the location of the subclass (inside the constructor

and class). There may be code below the listener class depending on the design

or development.

45

Chapter 5 Interface Design & Development

The following example creates a frame with two buttons, each of which opens

another frame with a label. Both listeners are within the ButtonTest class.

Ex. 5.7 – Two-button Three-frame Example

package buttonTest;

import java.awt.event.*;

import javax.swing.JButton;

import javax.swing.*;

public class ButtonTest {

public static void main(String[] args) {

 JFrame frame1 = new JFrame();

 frame1.setSize(500, 500);

 frame1.setTitle("Button test");

 JPanel panel = new JPanel();

 JButton button1 = new JButton("First button");

 JButton button2 = new JButton("Second button");

 frame1.add(panel);

 panel.add(button1);

 panel.add(button2);

 frame1.setVisible(true);

 button1.addActionListener(new Action1());

 button2.addActionListener(new Action2());

 frame1.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 } // end of main

 static class Action1 implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 JFrame frame2 = new JFrame(); // create another frame

 JPanel panel2 = new JPanel(); // create another panel

 JLabel label2 = new JLabel("First Window Label");

 frame2.setSize(300,300);

 panel2.add(label2);

 frame2.add(panel2);

 frame2.setVisible(true);

 }

 } // end of Action1

46

Chapter 5 Interface Design & Development

 static class Action2 implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 JFrame frame3 = new JFrame(); // create another frame

 JPanel panel3 = new JPanel(); // create another panel

 JLabel label3 = new JLabel("Second Window Label");

 frame3.setSize(200,200);

 panel3.add(label3);

 frame3.add(panel3);

 frame3.setVisible(true);

 }

 } // end of Action2

}

The program in Ex. 5.7 creates a main frame with two buttons that create

additional windows which could easily be extended.

A Word of Caution

Control is transferred to the Create Account window, but main continues. After

successful account creation, this window will need to be modified into the Login

window, or destroyed and the Login window will need to be created. The main

program is not waiting for the window to be modified or destroyed. If the next

statement in main creates an instance of a Login window, it will execute while

the Create Account window is in view and both windows will be displayed.

47

Chapter 5 Interface Design & Development

Using “wait()” is unacceptable due to thread manipulation and a timing loop is

inappropriate engineering. It would be easy to implement our way down a rabbit

hole and find out that we can’t get back. Thinking through the execution process

ahead of development will avoid time consuming errors in implementation.

The solution depends on the design. With a dialog box, the program will wait

until the dialog is satisfied. If a separate class is used to generate a window, the

previous window could be hidden (set visible to false), or have its’ component

disabled. Thinking ahead is an important aspect of design.

Closing Windows/Programs

The setDefaultCloseOperation() method is recommended to end a program when

the user closes the window otherwise, the program continues to run.

 myFrame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

A close operation can also be written using a window listener to handle other

operations before ending the program. This example sets the CONSTANT for the

default close operation to do nothing. The window listener stops a running timer

and disposes of the frame.

 myFrame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

 myFrame.addWindowListener((WindowListener) new WindowAdapter() {

 @Override

 public void windowClosing(WindowEvent e) {

 myTimer.stop();

 myFrame.dispose();

 }
 });

48

Chapter 5 Interface Design & Development

The notation, @Override used above allows defining specific behaviors for a

particular class that override the existing method. It is not required, but is

considered a best practice, and lets the compiler know that we are overriding this

method.

Account Creation and Login Requirements

The creation of an account requires validation of the password criteria as well as

ensuring that is not already in use. The login operation requires validating the

account information. Both of these operations could be accomplished with a

database, but for simplicity and explanation the examples will utilize file

handling which is covered next.

49

Chapter 6 File Handling

Chapter 6

File Handling

File handling in Java uses the File class and two different classes depending upon

whether reading from or writing to the file. Reading uses the Scanner class much

like getting input from the keyboard. Writing uses the PrintWriter or FileWriter

class (see Append an Existing File below).

Reading from a File

// create an object of the File class and pass it the name of the file

File inputFile = new File(“input.txt”);

// create a Scanner object and the file object to the constructor

Scanner in = new Scanner(inputFile);

The Scanner methods used for keyboard input like next(), nextLine(), hasNext()

can also be used to read from the file. Recall that next() consumes any leading

white-space and reads until it encounters white space. The method nextLine() will

read including white space until the end of the line.

while (in.hasNextLine()) { // while there are lines to read

String textVar = in.nextLine(); // read the line into textVar

System.out.println(textVar); // display the line

}

50

Chapter 6 File Handling

Closing a file is really closing the stream in Java as shown here. In the chapter on

exception handling, try-with-resource will be covered which will close the files

automatically.

File inputFile = new File (“input.txt”);

Scanner in = new Scanner(inputFile);

// code to read from file

in.close(); // close the input stream

Writing to a File

// create an object of the PrintWriter class and pass it the name of the file.

PrintWriter out = new PrintWriter(“output.txt”);

If the file “output.txt” does not exist, it will be created. If it exists, it will be

emptied. The PrintWriter can use the System.out methods like print(), println(),

and printf(), and the stream can be closed in the same way as the Scanner.

PrintWriter out = new PrintWriter(“output.txt”);

// code to write to the file

out.close(); // close the output stream

Append an Existing File

When a file is opened by the PrintWriter, any file content is erased. To append to

an existing file requires creating an instance of the FileWriter class and then

assigning it to the PrintWriter. The first argument passed to the FileWriter

constructor is the name of the file in quotes, and the second is the Boolean value

true for appending. The FileWriter is then assigned to a PrintWriter as shown

below, and the PrintWriter methods can then be used as before for writing.

/* create an object of the FileWriter class called fwriter and

 assign it to a PrintWriter.named out. */

FileWriter fwriter = new FileWriter(“output.txt”, true);

PrintWriter out = new PrintWriter(fwriter);

51

Chapter 6 File Handling

Writing and Reading File Content

 Ex. 6.1 – File Reading and Writing

1. // Program creates a file, writes to the file, and reads back the text

2. public static void main(String[] args) {

3.

4. PrintWriter out = new PrintWriter(“data.txt”);

5. out.println(“Writing to a file.”);

6. out.close();

7.

8. File inputFile = new File(“data.txt”);

9. Scanner in = new Scanner(inputFile);

10. String text = in.nextLine();

11. System.out.print(text);

12. in.close();

13. }

Line 4 creates a PrintWriter and assigns it to “data.txt” creating “data.txt”.

Line 5 writes a phrase to the file.

Line 6 closes the output file.

Line 8 creates a File object and assigns it to “data.txt”.

Line 9 creates a Scanner and assigns it to the file.

Line 10 reads a line from the file and into a string.

Line 11 displays the text that was read.

Line 12 closes the input file.

Lines 8 and 9 from above can be combined into a single statement as shown

below.

Scanner in = new Scanner(new File (“data.txt”));

Example Ex. 6.1 reads the entire line from the file into a string. If reading one

word at a time from the file is preferred, the next() method would be used which

reads until it sees whitespace. A delimiter (data separator) can also be used for

52

Chapter 6 File Handling

reading and is a Scanner method. As an example, a comma delimited file could

be read as shown below. A Scanner named in2 is declared, and it is assigned the

comma delimiter to use. String handling will be covered in a later chapter.

Scanner in2 = new Scanner(new File (“dataComma.txt”));

String z = “”; // string declared

in2.useDelimiter(“,”); // comma delimiter assigned to Scanner

while(in2.hasNext()) { // while there are items in the file

z = in2.next(); // read up to the delimiter

}

Example Ex. 6.1 assumed that the file to read (data.txt) existed. If it does not, an

exception would be thrown and the program would terminate if the exception is

not handled. The IDE will force exception handling in the form of try/catch

blocks around areas where an exception could be thrown. This highlights areas

in the program requiring error detection and management which is covered in

the next section.

Exceptions

Exception handling is required when a file cannot be created or cannot be

opened, or other issues like a data type mismatch. The format for an exception

handler in Java is the try/catch block. The try block is entered and if a statement

raises an exception, the catch block (handler) for that exception type is entered,

the handler executes, and the program continues. An exception that is not

handled will halt execution of the program. There are a variety of exceptions that

could be thrown including NumberFormatExceptions, FileNotFoundExceptions,

and IOExceptions.

If a statement could throw an exception, the IDE will highlight this and expect

handling of the exception. The most straight forward way of handling them is to

use a try/catch clause. Catch clauses are exception specific and are a way of

handling the errors gracefully and not ending the program.

When a statement in the try clause throws an exception, control is transferred to

the catch block matching the exception thrown. No other statements in the try

block following the one that threw the exception will execute including closing a

53

Chapter 6 File Handling

file. Also, if an exception handler for the exception thrown does not exist, the

program will terminate.

The following program enhances Ex. 6.1 by adding the try/catch statements and

exception handlers.

Ex. 6.1A – File Writing and Reading with Exception Handling

 public static void main(String[] args) {

 try { // try block

PrintWriter out = new PrintWriter("data.txt");

 out.println("Writing to a file.");

 }

catch (FileNotFoundException e) { // catch block

 System.out.print(“The output file cannot be opened.”);

 e.printStackTrace();

 }

 try { // try block

Scanner in = new Scanner (new File (“data.txt”));

 String text = in.nextLine();

 System.out.print(text);

 }

catch (FileNotFoundException e) { // catch block

 System.out.println(“The input file cannot be opened.”);

 e.printStackTrace();

 }

 }

It is customary to use “e” as the exception parameter to receive the exception

object, and to print the stack trace during development for additional error

information. Below is the stack trace for Ex. 6.1A when the input file is not found.

Error Stack Trace for Ex. 6.1A

54

Chapter 6 File Handling

To ensure that resources used will be closed if an error occurs, the PrintWriter

and Scanner resources can be declared and instantiated within the try clause

(after the word “try” and prior to the curly brace). This is called a try-with-

resources statement. The resources will be closed automatically even if an

exception is thrown.

Ex. 6.2 – File Reading and Writing using try-with-resources

 public static void main(String[] args) {

 // try with resources statement guarantees the resource will be closed

 try (PrintWriter out = new PrintWriter("data.txt")) {

 out.println("Writing to a file.");

 }

catch (FileNotFoundException e) { // catch block

 System.out.print(“The output file cannot be opened.”);

 e.printStackTrace();

 }

// try with resources statement guarantees the resource will be closed

 try (Scanner in = new Scanner (new File (“data.txt”))) {

 String text = in.nextLine();

 System.out.print(text);

 }

catch (FileNotFoundException e) { // catch block

 System.out.println(“The input file cannot be opened.”);

 e.printStackTrace();

 }

 }

Reading and Writing Numeric Data

The examples so far have been writing text to a file and reading text from a file

into a string. Very often numeric data must be handled. Since the Scanner is used

for reading, nextInt() and nextDouble() can be used to read integers and doubles,

but may run into trouble if what is read is not a numeric value. The use of

hasNextInt() and hasNextDouble() can look ahead to ensure that the expected type

is there. To parse Integers and Doubles that have been read as text,

55

Chapter 6 File Handling

Integer.parseInt() and Double.parseDouble() will convert the text if possible. Data

handling will be covered in more detail in a later chapter.

Example Ex. 6.3 below writes integers to a file with line-feeds, and then a string.

The program then reads the integers using hasNextInt() which determines if there

is an integer to read before reading. It does not read the line feeds or string.

(Note: Exception handling is omitted.)

Ex. 6.3 – Writing Numbers to a File and Then Reading

1. // Program that writes numbers and a string to a text file, then reads the

numbers only for display

2. public static void main(String[] args) {

3. PrintWriter out = new PrintWriter(“data.txt”); // declare a PrintWriter

4. int x = 4;

5. while (x < 20) {

6. out.println(x); // write a set of integers to a file

7. x = x + 4;

8. }

9. out.println(“all done”); // write a string to the file

10. out.close() // close the file

11.

12. Scanner in = new Scanner(new File(“data.txt”));

13. int num = 0;

14. while (in.hasNextInt()) { // while there are integers to read

15. num = in.nextInt(); // read the next integer

16. System.out.println(num);

17. }

18. }

Lines 14 - 16 in pseudo-code: while there is an integer to read, read it, assign it to

“num”, and display the value of “num” and a line feed. The String is not read.

Ex. 6.3 Output Display

56

Chapter 6 File Handling

The technique used for reading and handling data from a file will be dependent

upon the task required. The data can be read one character, item, or line at a

time. Loops are typically used for this purpose. The flow chart from Chapter 1

repeated here requires a single computation and display of the result for each

item in the file. The loop reading the file stops at the end of the file. It could just

as easily end when hasNextInt(), hasNextDouble(), or hasNext() fails depending

upon the type being read.

File Reading Flow Chart

Data Design

For the example project, storing the user names and passwords during account

creation, and retrieving them for validation during login requires a data storage

design. When designing data files, there are a few considerations including the

format, text/binary, delimiters, and any encryption. These items must be well

thought out during the design phase due to the effect on development of the

current program and potential future expansion (scalability). Many large-scale,

data intensive programs require a formal Data Dictionary which is a separate

57

Chapter 6 File Handling

file that contains the data descriptions, format, delimiters (data separators), the

ordering of the data, and often, additional information and comments.

Data Format

Designing the data format is an important task that effects program design and

operation, data handling, and the scalability of the data and the program. A data

dictionary can provide useful information about file contents and how to extract

or parse the data for use in display and analysis. Creating a data dictionary also

allows the file to contain only data and flexibility with respect to delimiters.

Data dictionaries are also typically used for databases, and often describe the

contents and the relationship between the database elements.

The sample file data dictionary below specifies individual column numbers for

the data elements in the data set that follows. Each column (character) may be an

individual value or part of a group of characters forming a value.

Data Dictionary Sample (small portion) from NOAA

DD/MM/YYYY

GENERAL DATA FORMAT

ONE HEADER RECORD FOLLOWED BY DATA RECORDS:

COLUMN DATA DESCRIPTION

01-05 STATION NUMBER

08-12 RECORDING ENTITY NUMBER

14-25 YEAR-MONTH-DAY-HOUR-MINUTE (GMT)

27-29 DIR = WIND DIRECTION IN COMPASS DEGREES, 990 =

VARIABLE, REPORTED AS '***' WHEN AIR IS CALM (SPD WILL

THEN BE 000)

31-37 SPD & GUS = WIND SPEED & GUST IN MILES PER HOUR

39-41 CLG = CLOUD CEILING--LOWEST OPAQUE LAYER WITH 5/8

OR GREATER COVERAGE, IN HUNDREDS OF FEET, 722 =

UNLIMITED

43-45 SKC = SKY COVER -- CLR-CLEAR, SCT-SCATTERED-1/8 TO

4/8, BKN-BROKEN-5/8 TO 7/8, OVC-OVERCAST, OBS-

OBSCURED, POB-PARTIAL OBSCURATION

47-47 L = LOW CLOUD TYPE, SEE BELOW

58

Chapter 6 File Handling

Data File Sample

Utilizing data such as this is made possible by examining the data dictionary.

Although the data file contains a cryptic header as the first row, an explanation

for most of the columns is needed. As an example, the three columns on the right

of the sample data are described in the file header row as MW.

The data dictionary indicates that columns 14 thru 25 provide the data and time

of the data reading. The excerpt is shown here.

14-25 YEAR-MONTH-DAY-HOUR-MINUTE (GMT)

The last row in the sample file data above for those columns is shown below.

200601011054 (2006 01 01 1054)

The data dictionary makes it clear that this group can be parsed as:

Year 2006, January, 01, and 10:54 Greenwich Mean Time.

Create Account Operation

For the project user name and password data, there are many possible solutions

for file storage and access. Both items could be written to a text file on one line

with a space or tab between them (columnar data), two lines could be used, or

59

Chapter 6 File Handling

even two files adding a security feature of not having them located together. A

binary format could be used instead of text, and encryption could be used as

well. Regardless of the storage/retrieval algorithm, the operations are the same

with some design choices.

During the Create Account operation, the design could require that the user

name and password be unique, or that just the password be unique. In the Login

operation, both must be validated as a pair and compared with existing accounts.

Considering how the data will be used during login provides insight into how it

should be handled and stored during the creation operation. Comparing the

processes that will utilize the data shows the similarities and the differences for

design consideration. In other words, when considering the create account

operations it is a good idea to keep in mind how the login operation will work.

Create Account Operation Login Operation

1. Get user name Get user name

2. Get password Get password

3. Verify as unique Verify as existing pair

4. Reject errors, go to Step 1 Reject errors, go to Step 1

The only difference in operation is the verification process on Step 3. Both of

these require string handling which is covered in the next chapter.

Selecting a File - JFileChooser

For user file selection, Java provides a graphical interface called the JFileChooser.

The following example declares a JFileChooser (line 5 below). It sets the default

to the current directory using setCurrentDirectory() as shown on line 7 after

setting the File workingDir on line 3 to the current directory.

Notice that chooser.showOpenDialog() method on line 9 returns an integer. This is

null if the file was not selected which can be used by the calling method, or

returns a value corresponding to a constant as shown on line 12. Line 12 handles

the situation when a file is not selected in the try block and null is returned. The

else handles the case when a file is selected, and line 16 gets the file name and

path. Line 17 declares a scanner for reading the file, and line 18 declares a

StringBuilder called info to store the file contents. A line feed is added on line 21

since nextLine() removes it, and the StringBuilder is converted to a String on line

60

Chapter 6 File Handling

24 and returned to the calling method. The catch block of the try receives the

exception and returns null to coincide with line 13 when no file is selected.

Ex. 6.4 – File Selection Using JFileChooser and Reading using StringBuilder

1. public static String fileOpenAndRead() {

2.

3. File workingDir = new File(System.getProperty(“user.dir”));

4.

5. JFileChooser chooser = new JFileChooser();

6. chooser.setDialogTitle(“Choose a Data File”);

7. chooser.setCurrentDirectory(workingDir);

8.

9. int status = chooser.showOpenDialog(null);

10.

11. try {

12. if(status != JFileChooser.APPROVE_OPTION) {

13. return null;

14. }

15. else {

16. File file = chooser.getSelectedFile();

17. Scanner scan = new Scanner(file);

18. StringBuilder info = new StringBuilder();

19. while (scan.hasNext()) {

20. info.append(scan.nextLine());

21. info.append(“\n”);

22. }

23. scan.close();

24. return info.toString();

25. }

26. } catch (Exception e) {

27. return null;

28. }

29. }

61

Chapter 6 File Handling

JFileChooser Window

Filtering Selectable Files

To filter on a file type (extension), a filter can be declared and assigned to the

JFileChooser. The following code creates a file chooser and then creates a filter on

line 2 which includes only .jpg file types. The filter is assigned to the

JFileChooser on line 4 using setFilter().

Ex. 6.5 – File Type Selection using FileNameExtensionFilter

1. JFileChooser chooser = new JFileChooser();

2. FileNameExtensionFilter f = new FileNameExtensionFilter(“JPG”, “jpg”);

3.

4. chooser.setFilter(f); // assign the filter

5.

6. int returnVal = chooser.showOpenDialog(parent);

7. if(returnVal == JFileChooser.APPROVE_OPTION {

8. System.out.println(“The file chosen is “ +

chooser.getSelectedFile().getName());

9. }

10. else {

11. System.out.println(“No File Was Selected”);

62

Chapter 6 File Handling

Save As using JFileChooser

To save a file, declare a JFileChooser and use the showSaveDialog().

Ex. 6.6 – File “Save AS” using showSaveDialog()

JFileChooser fileChooser = new JFileChooser();

fileChooser.setDialogTitle("Specify a file to save");

int userSelection = fileChooser.showSaveDialog(parentFrame);

if (userSelection == JFileChooser.APPROVE_OPTION) {

File fileToSave = fileChooser.getSelectedFile();

System.out.println("Save as file: " + fileToSave.getAbsolutePath());

}

 JFileChooser “Save As” Window

63

Chapter 7 Strings, and ArrayLists

Chapter 7

Strings and ArrayLists

Java provides many ways to examine and manipulate strings. The individual

characters of a string can be accessed using indexes, and there are substring,

concatenation, and trim operations. The character class also provides various

tests for digits and case sensitivity which will be introduced later.

Strings are sequential, and the characters can be accessed by index using the

charAt() method. Index numbering begins at zero, and ends at n-1.

Ex. 7.1 – Indexing Strings

String myString = “something”;

System.out.println(myString.charAt(4)); // displays t

The index can also be used to obtain a copy of a single character from a string.

Ex. 7.2 – Copying a Character from a String

String myString = “copy”;

char ch = myString.charAt(2) ; // assigns “p” to ch

 System.out.println(ch) // displays p

If an out of range index is used, a StringIndexOutOfBoundsException is thrown.

64

Chapter 7 Strings, and ArrayLists

The ‘+’ operator is used to concatenate strings.

Ex. 7.3 – Concatenating Strings

 String cityString = “New”;

cityString = cityString + “ York”;

 System.out.println(cityString); // displays New York

 cityString += “ City”; // “+=” works as well

 System.out.println(cityString); // displays New York City

The length() method returns the length of a string and can be used as a loop

termination condition to avoid an out of bounds error.

Ex. 7.4 – The length() method with Strings

 String myString = “first name”;

 int strLen = myString.length(); // strLen will be assigned 9

int index = 0;

while (index < strLen) {

 System.out.println(myString.charAt(index) + “ “ + index);

 index += 1;

}

Ex. 7.4 Output

Character testing is handled using the Character class’ methods isDigit(),

isUpperCase(), isLowerCase(), isWhiteSpace(), and isLetter(). Each of these returns a

boolean. The characters in the string can be accessed as in the examples above,

and tested as shown in the example below.

65

Chapter 7 Strings, and ArrayLists

The following program declares a string and assigns it “ABCD12345def”, and

enters a while loop to access and evaluate each character in the string.

Ex. 7.5 – Character Testing a String

 String myString = “ABCD12345def”;

 int index = 0, digit = 0, upper = 0, lower = 0;

while (index < myString.length()) {

 char ch = myString.charAt(index);

 if (Character.isDigit(ch))

 digit++;

 if (Character.isUpperCase(ch))

 upper++;

 if (Character.isLowerCase(ch))

 lower++;

 index++;

}

System.out.println(“Digits “ + digit); // displays Digits 5

System.out.println(“Uppercase “ + upper); // displays Uppercase 4

System.out.println(“Lowercase “ + lower); // displays Lowercase 3

Substring Method

The substring() method returns a portion of a string. The method accepts one or

two arguments. When one argument is provided, the method returns a substring

beginning at that index and the rest of the string. When two arguments are

provided the method returns the portion of the string beginning with the first

argument and ending before the second. An example will help to clarify this.

String temp = “abcdefg”;

String str1 = temp.substring(2); // 3rd letter to end

String str2 = temp.substring(2, 5); // 3rd letter to 6th without 6th

System.out.println(“str1 is “ + str1); // displays cdefg

System.out.println(“str2 is “ + str2); // displays cde

66

Chapter 7 Strings, and ArrayLists

String Modification

The string modification methods include conversion to upper and lower case, as

well as a trim method. The Character class has conversion to upper and lower as

well.

Ex. 7.6 – String Manipulation

String str1 = “abcdefg”;

String upper = str1.toUpperCase(); // convert to uppercase

String str2 = “ ALL UPPER ”;

String lower = str.toLowerCase(); // convert to lowercase

String noSpaces = lower.trim(); // trim leading/trailing spaces

 System.out.println(str1);

 System.out.println(upper);

 System.out.println(“&” + str2 + “&”); // ampersands have been added

 System.out.println(“&” + lower + “&”); // to show the removal of the

System.out.println(“&” + noSpaces + “&”); // spaces

Ex. 7.6 Output

The replace() method returns a copy of a string object with all occurrences of a

specified character replaced by another specified character. Notice the case

sensitivity in this example.

String str1 = “she Sells Sea shells”;

String str2 = str1.replace(‘S’, ‘T’);

System.out.println(str2); // displays she Tells Tea shells

Only the uppercase occurrences of “S” were replaced as specified.

67

Chapter 7 Strings, and ArrayLists

The StringBuilder Class

The StringBuilder class is similar to the String class and provides many of the

same methods, but the contents of a StringBuilder can be changed. The default

constructor for the StringBuilder accepts no arguments and provides an instance

of the object with storage space to hold 16 characters initially. In addition to the

String methods, the StringBuilder class provides delete(), insert(), replace(), and

toString(), and there are multiple overloaded versions of append() available.

Example 6.4 utilizes a StringBuilder.

Tokenizing Strings

The process of tokenizing a String breaks the string into its components (tokens).

The split() method can be used for this purpose, and the character separating the

tokens is the delimiter. As an example, the following program declares a string as

a series of numbers separated by colons (the delimiter). Note: Although its use is

discouraged, the StringTokenizing class has been retained in the language.

Ex. 7.7 – String Tokenizing

Breaking a string into individual parts is known as tokenizing. The code below

tokenizes the string, stores the individual tokens in an array, and then displays

the array using an enhanced for loop (aka range-based loop).

String str1 = “12:34:56:78:14”;

String [] tokens = str1.split(“:”); // tokenize using the colon delimiter

for(String s : tokens) // displays all of the tokens

 System.out.print(“\t” + s);

Ex. 7.7 Output

Arrays

An Array in Java is a fixed size and is declared as shown in below. The elements are

accessed using square brackets and the index begins at zero.

 double [] numbers = new double[20]; // array of 20 doubles

68

Chapter 7 Strings, and ArrayLists

An Array can also be initialized when declared as shown below and the size will be

large enough to hold the values in the braces.

 double [] numbers = { 1.2, 2.3, 5.66, 34}; // array of 4 doubles

 System.out.print(numbers[2]); // displays 5.66

ArrayLists

The ArrayList class in Java is similar to an array and allows storing objects

(including strings). The ArrayList automatically expands as items are added to it.

Items can be removed from an ArrayList as well, and the ArrayList will shrink in

size. There are also methods to simplify ArrayList handling including add(),

size(), remove(), and set(). The indexes of the ArrayList shift to accommodate a

removed item or when an item is inserted into the ArrayList.

Ex. 7.8 – ArrayLists

To declare an ArrayList, angled brackets are used as shown in the example

below that declares an ArrayList of Strings.

ArrayList<String> myList = new ArrayList<String>();

To add to the list, remove from the list, access elements of the list and insert, the

following methods are used.

myList.add(“Betty”); // add three names to the ArrayList

myList.add(“James”);

myList.add(“Devon”);

System.out.println(“Initial ArrayList”);

for(String name : myList) // display the indexes and names

 System.out.println(name);

myList.remove(0); // removes Betty from the ArrayList

myList.add(0, “Allison”); // inserts Allison at index 0

myList.set(1, “Pavin”); // replaces James with Pavin

System.out.println(“Modified ArrayList”);

for(String name : myList) // display the indexes and names

 System.out.println(name);

69

Chapter 7 Strings, and ArrayLists

Ex. 7.8 Output

Wrapper Classes

The primitive data types are not used with ArrayLists. Instead a wrapper class is

employed. Wrapper class names begin with uppercase letters, and Integer and

Character are spelled out. Conversion between primitive types and wrapper

classes is automatic (auto-boxing), but the wrapper class must be used when

declaring an ArrayList. The Java Wrapper classes are listed below.

Ex. 7.9 – ArrayList of Doubles

The wrapper class “Double” is used in place of “double” within the angled

brackets for the ArrayList. All other methods and operation are as shown above

for Strings.

ArrayList<Double> myList = new ArrayList<Double>();

To add to the list, remove from the list, access elements of the list and insert, the

following methods are used.

70

Chapter 7 Strings, and ArrayLists

 myList.add(2.22); // add three doubles to the ArrayList

 myList.add(3.33);

 myList.add(3.45);

 System.out.println("Initial ArrayList");

 for(Double cost : myList) // display the indexes and values

 System.out.println(cost);

 myList.remove(0); // removes 2.22 from the ArrayList

 myList.add(0, 1.23); // inserts 1.23 at index 0

 myList.set(1, 2.34); // replaces 3.33 with 2.34

 System.out.println("Modified ArrayList");

 for(double cost : myList) // display the indexes and names

 System.out.println(cost);

Ex. 7.9 Output

Ex. 7.10 – Tab Delimited File into String

File inputFile = new File(“input.txt”);

Scanner in = new Scanner(inputFile);

while (in.hasNext()) { // while there are items in the file

String var1 = in.next(); // read until the tab

String var2 = in.next(); // read until the end of line

System.out.println(“Item 1 “ + var1 + “ Item 2 “ + var2);

}

71

Chapter 8 Main GUI Design and Components

Chapter 8

Main GUI Design and Components

Back to the Project

The project requirements for creating a user account and for login are designed

and developed using file handling and string manipulation. Consider that when

a user logs in, the login information must be verified against current accounts. If

the user is creating a new account, it should be completed only if the account

does not already exist. Both of these scenarios require a file or files for storing

and comparing account information, and string manipulation which was covered

previously. They also require another window for obtaining user input, and

error handling. After successful login, the main GUI interface is displayed ready

for user input. Tackling these requirements all at once would be complex, but

they can be divided into segments and completed in pieces more easily.

Step-wise Refinement and Iterative Enhancement

Breaking down a large problem or task into smaller segments is often referred to

as Stepwise Refinement. A large problem or task is decomposed into smaller

tasks, and the smaller tasks are then decomposed into even smaller tasks. Once

task size and complexity are divided and refined into more manageable portions,

design and development begin. Once design of the segments is completed, the

smaller segments are developed and the program is built up as the various parts

72

Chapter 8 Main GUI Design and Components

are completed and added. This process of building and adding software in small

segments is referred to as Iterative Enhancement and aligns with the Agile

Software Development Process.

With respect to the User Login and Account Creation operations, there are

several areas that can be refined, and a flow chart of the operation shows the

commonality.

Account Creation and User Login Flow Charts

There are multiple ways of implementing these operations and comparing the

operations graphically can be very helpful when deciding on a course forward.

This is also true of the main interface.

Main Interface Design

Design is the first step to developing the main interface. The user will interact

with the program through this GUI and ease-of-use, and intuitive controls and

labels are necessary. The controls to be used on the main GUI depend on what

the program does and how the user should interact with it. Are a few buttons

73

Chapter 8 Main GUI Design and Components

adequate or does the program require a more sophisticated layout? Button

groups may suffice, but they allow multiple selections. Radio buttons can be

used and implemented to be mutually exclusive. Drop-down menus (option

lists) are also mutually exclusive requiring the user to select just one. These

considerations during the design phase will save time redesigning or

reconfiguring an inadequate interface.

The interface layout should be designed in conjunction with the operational

design. Storyboarding, pseudo-code, and flow charts used during design will

surface issues that can be corrected early in the process. Software engineers often

overlook essential aspects of the interface since they know what the program

does, how it does it, and the inputs required. The Agile process typically

involves stakeholder reviews and in some cases the client or customer is

included. This provides an opportunity for people not familiar with the planned

design and operation of the program to offer suggestions for improvement. It

also eliminates surprises when the final product is delivered. Examples for a

main interface are shown below with various components.

The JComboBoxes (drop-down lists) in this example provide the selections to

limit user input. Text boxes and buttons handle the rest.

Depending on the operation of the program, different interface controls may be

used for user interaction. In the next example, only buttons are used and are

enabled and disabled to prevent errors. In this particular program, a frequency

74

Chapter 8 Main GUI Design and Components

cannot be played or plotted if one has not been entered or selected, and so those

buttons are not yet enabled. A dialog box with an error message could be used

when a selection should not be made, but that would require the user to close the

message box and continue. Disabling the button is a better solution.

The same design tools that were used for the Create Account and Login windows

can be employed including the row and column placement of the components

and image(s). The layout options, constraints, and constraint features can be used

to set the positions as needed to accommodate the elements of the window and

their use. Appendix F includes an example that combines layout managers

Components

Java provides many components (widgets or controls) for handling user

interaction including radio buttons, check boxes, and combo boxes. The

components should be located and placed on the frame to accommodate user

interaction. The choice for the component should be made during the design and

review of how the user will interact with the program. User selection of

operations is usually best handled with a component so that there is no

erroneous typing by the user and to reduce input validation requirements.

75

Chapter 8 Main GUI Design and Components

The Combo Box (drop-down menu)

A drop-down menu or combo-box can provide mutually exclusive selections.

When an item in the list is selected, it replaces the read-only text field of the box.

A default value can also be indicated. For the Airline example above, the creation

of the departure airport combo box and the array of strings to be displayed in the

list are created as shown here.

 String[] dLocs = { " TTN ", " BED " }; // airport designator array

 final JComboBox<String> dBox = new JComboBox<String>(dLocs);

The box is located on the panel using constraints and a Grid Bag Layout.

 constraints.gridx = 3;

 newPanel.add(dBox, constraints); // combo box for airport

To obtain the user selection, getSelectedItem() is used as shown here.

 // get the combo box selection

 String depart = (String) dBox.getSelectedItem();

Radio Buttons

Radio buttons can be mutually exclusive depending on the implementation. The

creation is similar to a combo box, and the buttons must be added to a group to

create the mutually exclusive relationship. In addition, radio buttons generate an

action event when selected which is handled with an action listener. This adds

complexity since the user may want to change their mind and select a different

button. The isSelected() method is used to obtain the input in code. In the example

below, two radio buttons are created, added to a group, and then to a panel.

JRadioButton rad1 = new JRadioButton(“First”);

JRadioButton rad2 = new JRadioButton(“Second”);

76

Chapter 8 Main GUI Design and Components

Next, a group is created for the radio buttons.

ButtonGroup radGroup = new ButtonGroup(); // create the button group

Then the buttons are added to the group.

 radGroup.add(rad1);

 radGroup.add(rad2);

And finally, they are located using constraints or another layout manager and

are added to the panel.

myPanel.add(rad1);

myPanel.add(rad2);

To obtain the user selection in an event handler, the getSource() method is used.

public void actionPerformed(ActionEvent e) {

if(e.getSource() == rad1)

 doSomething;

 else if(e.getSource() == rad2)

 doSomething;

To obtain the user selection within code, each radio button would be tested.

if(rad1.isSelected())

 doSomething;

Check Boxes

Check Boxes are a group of elements that can be mutually exclusive or allow the

user to select multiple choices. Their creation is similar to radio buttons, and they

can be added to a group to create the mutually exclusive relationship. In

addition, check boxes generate an action event when selected by the user which

can be handled with an action listener, or accessed with the isSelected() method.

77

Chapter 8 Main GUI Design and Components

Drop-down Menus

A drop-down menu on the border of a window is often used for file handling

and program features typically selected by users. Java provides classes for menus

including the menu bar, menu, and menu item that are used to create these. The

code below creates a file handling menu on a window.

Ex. 8.1 – Frame Menu

public static void main(String[] args) {

 JFrame myFrame = new JFrame(); // create the frame

 JMenuBar mBar = new JMenuBar(); // create the Menu bar

 JMenu fileMenu = new JMenu("File"); // create the Menu

 JMenuItem openItem = new JMenuItem("Open"); // create 4 menu items

 JMenuItem saveItem = new JMenuItem("Save");

 JMenuItem saveAsItem = new JMenuItem("Save As");

 JMenuItem exitItem = new JMenuItem("Exit");

 fileMenu.add(openItem); // add the 4 items to the menu

 fileMenu.add(saveItem);

 fileMenu.add(saveAsItem);

 fileMenu.add(exitItem);

 mBar.add(fileMenu); // add the menu to the bar

 myFrame.setJMenuBar(mBar); // add the menu bar to the frame

 myFrame.setSize(300,300);

 myFrame.setVisible(true);

 myFrame. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

To capture the selection of a menu item, each item would have an actionListener

for example:

78

Chapter 8 Main GUI Design and Components

 class MenuItemListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 System.out.println("SAVE AS WAS SELECTED.");
 }
 }

 saveAsItem.addActionListener(new MenuItemListener());

Ex. 8.1 Frame Menu

Multiple Button

When many buttons are needed on a frame, creating, positioning, and writing an

action listener for each one would require extensive code. A loop can be used to

generate, locate, and add a listener to the buttons reducing the amount of code

required. The following example creates ten (10) buttons, locates them, and adds

action listeners to them within a loop.

Ten Buttons Example

79

Chapter 8 Main GUI Design and Components

Ex. 8.2 – Ten Buttons

 public static void main(String[] args) {

 JButton[] buttonsArray = new JButton[10]; // Array of buttons

 JFrame mainGUI = new JFrame("Ten Buttons");

 JPanel mainPanel = new JPanel(new GridBagLayout());

 GridBagConstraints constraints = new GridBagConstraints();

 // Array of the names on the buttons

 String [] butNames = {"0", "1","2","3","4","5","6","7","8","9"};

 constraints.gridwidth = 1;

 constraints.gridheight = 3;

 int yLoc = 20, xLoc = 2; // Starting location on the grid

 // generic listener for the buttons

 ActionListener listener = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 if (e.getSource() instanceof JButton) {

 // get the text on the button

 String text = ((JButton) e.getSource()).getText();

 // change the clicked button color

 ((JComponent) e.getSource()).setBackground(Color.ORANGE);

 // disable the button that was clicked

 ((JComponent) e.getSource()).setEnabled(false);

 System.out.println("Button listener for button: " + text); // test

 }

 }

 };

 // loop that creates and locates the buttons, and adds the listener

 for(int i = 0; i < 10; i++) {

 buttonsArray[i] = new JButton(butNames[i]);

 buttonsArray[i].addActionListener(listener); // add the listener

80

Chapter 8 Main GUI Design and Components

 xLoc = i + 2;

 buttonsArray[i].setBackground(Color.WHITE);

 buttonsArray[i].setForeground(Color.BLUE);

 if(i > 4) {

 yLoc = 24; // go to second row

 xLoc = i - 5 + 2; // starts at two

 }

 else {

 xLoc = i + 2;

 }

 constraints.gridx = xLoc; // locate the button

 constraints.gridy = yLoc;

 mainPanel.add(buttonsArray[i], constraints);

 }

 mainGUI.setSize(840,600);

 mainGUI.add(mainPanel);

 mainPanel.setBackground(Color.LIGHT_GRAY);

 mainGUI.setVisible(true);

 } // end of main

}

81

Chapter 8 Main GUI Design and Components

Main Window Image

Any image can be used as an icon, background, or to enhance the interface, and

there are many ways to create one for use in the program. One way is to use Snip

to select an image or portion of an image to use, and save it as a file. Then open

the image file with MS-Paint or Gimp and use resize to convert the image to the

appropriate size using Percentage or Pixels. The image is then added to the

directory where the program package is located for use. Positioning the image is

handled similar to a control or component. The Audio Frequency program GUI

shown earlier has an image that covers most of the main window. The

BufferedImage class is a subclass of the AWT Image class, and has three

constructors and methods for getting information about the image. To add an

image, create a buffered image and a label to hold it as shown below.

 BufferedImage myPicture = ImageIO.read(new File("fileName.png"));

 JLabel picLabel = new JLabel(new ImageIcon(myPicture));

Add the picture label to the panel using constraints for the location.

mainPanel.add(picLabel, constraints);

The code for the image on the Audio Frequency GUI is shown below.

BufferedImage myPicture = ImageIO.read(new File("Sine1.png"));

JLabel picLabel = new JLabel(new ImageIcon(myPicture));

constraints.gridx = 1;

constraints.gridy = 2;

constraints.anchor = GridBagConstraints.CENTER;

constraints.gridwidth = 5; // set the grid width

newPanel.add(picLabel, constraints);

As shown above, the BufferedImage is declared and ImageIO reads a declared

File. A Label is declared to hold the image and is assigned a new ImageIcon

which is assigned the picture File. The location (constraints) is specified and the

Label is added to the Panel. The image on the Audio Frequency GUI is shown

again below.

82

Chapter 8 Main GUI Design and Components

Audio Frequency GUI with Image

Changing an Image

To change an existing image, use setIcon(). The code below accesses an array of

images that will change throughout the program using the setIcon() method.

picLabel.setIcon(new ImageIcon(imageFileArray[imageNum]));

Images can also be used in Java with Graphics2D along from the java.awt.Toolkit

in the paint method.

class MyCanvas extends JComponent {

 public void paint(Graphics g) {

 Graphics2D g2d = (Graphics2D) g;

 Image img1 = Toolkit.getDefaultToolkit().getImage("yourFile.gif");

 // arguments - image, x, y, ImageObserver

 g2d.drawImage(img1, 10, 10, this);

 g2d.finalize();

 }

}

83

Chapter 9 Main GUI and Data Display

Chapter 9

Main GUI and Data Display

Many GUI programs display computed data to users. To provide examples, two

situations will be considered; handling output to a display as the user enters data

used in a computation, and reading data from a file to display. The examples will

display in the main user interface and in a separate window.

Assume a meteor defense system program that accepts the size of a meteor in

meters and the distance from Earth in miles. The program computes the speed of

the meteor and the time-to-impact. Entry components on the main window will

obtain user input, and a button click will call a compute function to compute the

values which will be displayed in the GUI and in columns in a separate output

window. For this example, main (shown below) will simply create an instance

(object) of the MeteorWin() class shown later.

Ex. 9.1 – Meteor Program Example - main

package CH_9_Meteor_package;

public class CH_9_Meteor {

 public static void main(String[] args) {

 new MeteorWin(); // create an instance of MeteorWin

 }

}

84

Chapter 9 Main GUI and Data Display

The main GUI (MeteorWin) will have two entry components for user input with

description labels, two labels for the output section, and a compute button. The

labels for the meteor speed and time-to-impact will be modified and overwritten

when the compute button is clicked to show the results.

Meteor Program Example

Ex. 9.2 – Meteor Program Example – MeteorWin()

public class MeteorWin extends JFrame {

 private static JFrame mainGUI = new JFrame("Meteor Program in Java");

 private JPanel newPanel = new JPanel(new GridBagLayout());

 private JLabel labelSize = new JLabel("Meteor size in meters (0 - 12): ");

 private JLabel labelDist = new JLabel("Distance from Earth in miles (0-900:");

 private JLabel labelSpeed = new JLabel("The speed of the meteor in mph is: ");

 private JLabel labelTimeToImpact = new JLabel("The Time-to-impact is: ");

 private JTextField textFieldSize = new JTextField(6);

 private JTextField textFieldDistance = new JTextField(6);

 private JButton computeButton = new JButton("Compute");

The components are created in the class before the constructor as shown above,

and are positioned using a Grid Bag Layout and constraints within the

constructor shown below.

85

Chapter 9 Main GUI and Data Display

Ex. 9.3 – Meteor Program Example – MeteorWin() Constructor

 public MeteorWin() { // constructor

 mainGUI.setSize(500,350);

 GridBagConstraints constraints = new GridBagConstraints();

 constraints.anchor = GridBagConstraints.WEST;

 constraints.insets = new Insets(10, 10, 10, 10); // padding for all components

 constraints.weightx = 0.5;

 constraints.gridx = 0; // add components to the panel

 constraints.gridy = 0;

 newPanel.add(labelSize, constraints);

 constraints.gridx = 2;

 newPanel.add(textFieldSize, constraints);

 textFieldSize.setHorizontalAlignment(JTextField.RIGHT);

 constraints.gridx = 0;

 constraints.gridy = 1;

 newPanel.add(labelDistance, constraints);

 constraints.gridx = 2;

 newPanel.add(textFieldDistance, constraints);

 textFieldDistance.setHorizontalAlignment(JTextField.RIGHT);

 constraints.gridx = 0;

 constraints.gridy = 3;

 newPanel.add(labelSpeed, constraints);

 constraints.gridx = 0;

 constraints.gridy = 4;

 newPanel.add(labelTimeToImpact, constraints);

 constraints.gridx = 2;

 constraints.gridy = 6;

 constraints.anchor = GridBagConstraints.WEST;

 newPanel.add(computeButton, constraints);

Font myFont = new Font("Serif", Font.BOLD, 12); // set the panel font

 newPanel.setFont(myFont);

86

Chapter 9 Main GUI and Data Display

 newPanel.setBorder(BorderFactory.createTitledBorder(// set the panel border

 BorderFactory.createEtchedBorder(), "Meteor Speed and Time-To-Impact"));

 mainGUI.add(newPanel); // add the panel to the GUI

 mainGUI.setResizable(false); // disallow resizing

 mainGUI.setLocationRelativeTo(null); // center the GUI

 mainGUI.setVisible(true);

// assign the action listener to the button

 computeButton.addActionListener(new ButtonListener());

 } // end of constructor

The Button Listener

The work is really accomplished in the action listener once the button is clicked.

This includes validating the input, computing the values, and updating the labels

with the output. User input is handled first using getText() in a “try” block.

Ex. 9.4 – Meteor Program Example – ButtonListener

private class ButtonListener implements ActionListener

{

 public void actionPerformed(ActionEvent e)

 {

 double size = 0, distance = 0, speed = 0;

 try {

 String sizeString = textFieldSize.getText(); // get the meteor size

 size = Double.parseDouble(sizeString);

 String distanceString = textFieldDistance.getText();// get the distance

 distance = Double.parseDouble(distanceString);

 // input validation

 if(size <= 0 || size > 12 || distance <= 0 || distance > 900) {

 labelSpeed.setText("Valid data cannot be computed. ");

 labelTimeToImpact.setText("Valid data cannot be computed.");

 } // end of IF

If the “try” block succeeds, the values are computed and the labels are updated

using the setText() method. If the “try” block fails because of invalid input, the

“catch” block (below) contains a showMessageDialog() announcing the error.

87

Chapter 9 Main GUI and Data Display

Ex. 9.4 – Meteor Program Example – ButtonListener (continued)

 speed = size * 120.0;

 double TTI = distance/speed; // compute time-to-impact

 int TTIhours = (int)TTI; // parse out hours

 int TTImins = (int)((TTI - TTIhours) * 60); // parse out minutes

labelSpeed.setText("The speed of the meteor is: " +
String.format("%,.1f", speed) + " mph");

labelTimeToImpact.setText("The time to impact is: " + TTIhours + "
Hours : " + TTImins + " Minutes");

 // Placeholder to update the output window

 }

 catch(NumberFormatException ne) {

JOptionPane.showMessageDialog(null, "An invalid value has been
entered.", "Invalid Input", JOptionPane.WARNING_MESSAGE);

 }

 }

 }; // end of ButtonListener

 } // end of MeteorWin class

The exception that could be thrown in this case is a number format exception if a

number is not entered by the user as shown below.

Number Format Exception

In the code above, there is a placeholder for calling a function to update the

separate output window. This will be covered next.

88

Chapter 9 Main GUI and Data Display

Output to a separate window

The example program so far has a main GUI, it accepts and validates user input,

and updates the labels on the GUI after computing the values. The separate

display output of column data is not yet implemented. The program will first

need to create the second window and then update the window as the user

enters additional input for computed values. There are a variety of designs for

implementing this including: creating the second window when the program

starts, having a second button on the main GUI that creates the second window,

or creating the second window when the compute button is clicked for the first

time.

Depending on the location of the data display window class, this second

window could be created in main, within the MeteorWin constructor, or when

MetoerWin is created. To ensure that the data display object can be accessed and

updated, the example creates the instance in the MeteorWin class.

Ex. 9.5 – Data Display Window – Create on Program Start

public class MeteorWin extends JFrame {

 DataOutputWin ddWin = new DataOutputWin(); // create the data display

private static JFrame mainGUI = new JFrame("Meteor Program in Java");

Data Display in the Second Window

The data display window will require headers for the columns and a way to add

the values as they are computed in column format. Java provides a table and text

area solution, or a string could be built through concatenation and formatted

with spacing for display. The StringBuilder class could also be used. A

combination of formatting and the text area are used in this example, and the

DataOutputWin is declared as a subclass of the MeteorWin class. A JTextArea is

declared as having 40 rows (should be enough) and 4 columns, and a pre-

formatted header is assigned when declared. The String.format() method creates

the column spacing which requires a little trial and error, but once set for the

data values works fine. The append() method enables adding rows of data, the

setLocation() method locates the window offset from the main GUI, and the

mainGUI.toFront() ensures that the main GUI is in front of the data display

window. There is a placeholder comment in the code for the update function.

89

Chapter 9 Main GUI and Data Display

Ex. 9.6 – the Data Display Window

 public class DataOutputWin {

 private JFrame ddWin = new JFrame("Meteor Data Display");
 private JPanel ddPanel = new JPanel();

String header1 = String.format("%20s %20s %20s %20s", "Meteor", "Distance",
"Speed", "Time to");

String header2 = String.format("%20s %25s %18s %18s", " Size", " from Earth",
"in MPH", "Impact");

 // text area with 40 rows and 4 columns

private JTextArea ddTA = new JTextArea(header1, 40, 4);

 DataOutputWin() { // constructor

 ddWin.setSize(500,350);

 ddPanel.setBackground(Color.white);

 Font myFont = new Font("Serif", Font.BOLD, 12); // set the font

 newPanel.setFont(myFont);

 ddTA.setFont(myFont);

 ddPanel.add(ddTA); // add the textArea to the panel

 ddWin.add(ddPanel); // add the panel to this frame

 ddTA.append("\n" + header2); // append to the text area

 ddWin.setResizable(false);

 ddWin.setLocation(200,200);

 ddWin.setVisible(true);

 mainGUI.toFront();

 }

 // Placeholder for the update method in 9.7

 } // end of DataOutputWin class

} // end of MeteorWin class

An update is required each time the “Compute” button is clicked, and the data

will need to be formatted to maintain the columns. The placeholder is for a call to

a method updateData(), and this method is added to the DataOutputWin class.

90

Chapter 9 Main GUI and Data Display

Ex. 9.7 – Update Data Method

public void updateData(double size, double distance, double speed, double TTI) {

 String dataSet = String.format("%20s %25s %18s %18s", size, distance, speed, TTI);

 ddTA.append("\n" + dataSet); // append to the text area

 }

 } // end of DataOutputWin class

The updateData() method receives the values computed when the button was

clicked and appends the values to the JTextArea after formatting them for the

columns. The time-to-impact value was formatted for the main GUI within the

setText() method, so the value passed to the method is not formatted correctly as

shown in the screen capture below. This can be done prior to passing the value

or in the updateData() method.

Ex. 9.7 Display Output

The updateData() method needs a string and the TTI value is a double that

represents hours and hundredths of hours. The same parsing used in the button

listener could be employed in the updateData() method with some additions like a

colon separator for hours and minutes.

The solution below includes handling cases when the minutes portion of time-to-

impact is less than 10 and zero would be eliminated from the integer value.

91

Chapter 9 Main GUI and Data Display

Ex. 9.7A – Update Data Method Corrected

public void updateData(double size, double distance, double spd, double TTI) {

int TTIhours = (int)TTI;

int TTImins = (int)((TTI - TTIhours) * 60);

String minTo = "";

if(TTImins < 10) // if it is 1 thru 9, the preceding zero would be lost.

 minTo = "0" + (String.valueOf(TTImins));

String timeTo = TTIhours + ":" + minTo;

String dataSet = String.format("%10s %25s %23s %18s", size, distance, spd, timeTo);

ddTA.append("\n" + dataSet); // append to the text area

 }

} // end of DataOutputWin class

Ex. 9.7A Display Output

Scrollbar

To add a scroll bar to a window, a JScrollPane is used and is assigned to the

panel. In the program below, an image and BorderLayouts are used. The

JScrollPane is added to the frame after assigning it to myPanel and setting the

scroll bar specifics.

92

Chapter 9 Main GUI and Data Display

Ex. 9.8 – ScrollPane Example

public class ScrollPaneExample extends JFrame {

 JFrame myFrame = new JFrame("Scroll Pane");

 JLabel textLabel = new JLabel("Showing Scroll Pane", JLabel.CENTER);

 ImageIcon image = new ImageIcon("nightsky.jpg");

 JLabel picLabel = new JLabel(image, JLabel.CENTER);

 JPanel myPanel = new JPanel(new BorderLayout());

 public ScrollPaneExample()

 {

 textLabel.setPreferredSize(new Dimension(300,60));

 myFrame.getContentPane().setBackground(Color.WHITE);

 myPanel.add(picLabel, BorderLayout.CENTER);

 myFrame.add(textLabel, BorderLayout.NORTH);

JScrollPane mySC = new JScrollPane(myPanel,
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,

 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);

 myFrame.add(mySC,BorderLayout.CENTER);

 myFrame.setSize(300,400);

 myFrame.setVisible(true);

 }

 public static void main(String[] args) {

 new ScrollPaneExample();

 }

}

Ex. 9.8 ScrollPane Example Output

93

Chapter 9 Main GUI and Data Display

File Data Display

Reading data from a file and displaying it would be handled similar to the

update data example above. Assume that there is a data file containing a data set

that would be used to compute values and display results in columns. A loop

would read from the file and pass the values to the computing method.

Plotting Data

Data can be plotted (drawn) on a display window, but not on a JFrame object. To

draw (including text), a JComponent, JPanel, JTextComponent, or JLabel are

used. The paintComponent method does the drawing, and is called when the

component is created the first time, and when the window is resized. The

paintComponent receives a Graphics object which has the graphics state (color,

font, etc.). As an example, the following code will draw some bars in a window.

Ex. 9.9 – Bars on a JComponent

package Bars_9_8_package;

public class Bars_9_8 extends JComponent {

 public void paintComponent(Graphics g)

 {

 g.fillRect(0, 10, 200, 10); // Draw the bars

 g.fillRect(0, 30, 300, 10);

 g.fillRect(0, 50, 100, 10);

 }

 public static void main(String[] args) {

 JFrame frame = new JFrame();

 frame.setSize(400, 200);

 frame.setTitle("A bar chart");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JComponent myChart = new Bars_9_8();

 frame.add(myChart);

 frame.setVisible(true);

 }

}

94

Chapter 9 Main GUI and Data Display

Ex. 9.9 Bar Chart Output

The bars are drawn using fillRect() with arguments for starting and endpoints as

x-coord, y-coord, and width, and height. When drawing (graphics in general) it

is important to remember that x,y coordinates 0,0 are in the top left corner of the

output window. The y-coordinate is down from there as a positive number. To

illustrate this, the bar chart drawing code from the previous example is modified

to draw vertical bars. The starting point for the x-coordinate moves 20 pixels to

the right for each new bar. The starting y-coordinate is static at 50 pixels. The

width is 10 pixels for each bar, and the endpoint for the y-coordinate increases by

10 pixels for each bar resulting in an increase downward. This example also uses

drawString() to add text to the window.

Ex. 9.9A – Bars on a JComponent - vertical

 public void paintComponent(Graphics g) // vertical

 {

 g.fillRect(20, 50, 10, 30); // starting x-coordinate moves 20 pixels right

 g.fillRect(40, 50, 10, 40); // starting y-coordinate is static at 50 pixels

 g.fillRect(60, 50, 10, 50); // width is static at 10 pixels

g.drawString(“Bar Chart Example”, 140, 50); // Draw the text

 }

Ex. 9.9A Bar Chart Output

95

Chapter 9 Main GUI and Data Display

The previous examples illustrate a single drawing action. To plot as the user

enters data will require multiple calls to redraw (repaint) as data is entered. The

next example uses a program that computes a Celsius temperature from a

Fahrenheit input and plots both values in a second display.

Ex. 9.10 – Temperature Conversion and Plot

Ex. 9.10 Temperature Conversion Plot

The user will enter a value and the Celsius temperature will be output on the

main GUI while the entered Fahrenheit temperature and computed Celsius

temperature will be plotted in the second window. Creating the second window

was covered earlier, and that code will be omitted in the example.

The solution requires having the paint component update the frame when data is

entered and computed. Since Java repaints the entire panel, earlier data must be

preserved and repainted along with new data. An ArrayList can be used to store

the values, and a loop will cycle through the values for repainting.

Starting with the plot window, this code sets up the frame and ArrayList in the

class. The serialVersionUID is beyond the scope of this text, but has to do with

serializing and deserializing of objects. The IDE can add a default value.

 public class PlotWin extends JComponent {

 private static final long serialVersionUID = 1L;

 private JFrame pWin = new JFrame("Temperature Data Display");
 private JPanel pPanel = new JPanel();

 String Title = "Temperature Conversion Values";

 private ArrayList<Integer> values;

96

Chapter 9 Main GUI and Data Display

Next, the constructor declares the ArrayList, sets the size and background for the

panel, and then it is added to the frame (pWin).

 PlotWin() { // constructor

 values = new ArrayList<Integer>();

 pWin.setSize(500,350); // width, height
 pPanel.setBackground(Color.white);

 // add the panel to this frame
 pWin.add(pPanel);

As shown below, a JComponent is declared in the PlotWin constructor along

with the paintComponent for drawing. Graphics is a helper class that allows

drawing things on the panel and super.paintComponent(g) erases whatever is

currently drawn and prepares the component for drawing. Two fonts are created

for the example. One for the title in the plot window and one for the values that

are plotted. The panel title is drawn using drawString(), and drawLine() draws the

x and y axis lines.

 JComponent component = new JComponent() {

 public void paintComponent(Graphics g) {

 super.paintComponent(g);

 // Create a font for the title
 Font titleFont = new Font("Arial", Font.BOLD, 14);
 g.setFont(titleFont);

 // Create a font for the plotted values
 Font FCFont = new Font("Arial", Font.BOLD, 10);

 g.setColor(Color.BLACK);
 // Title in panel
 g.drawString("Temperature Conversion Plot", 125, 20);

 g.drawString("0", 10, 280); // text for axis
 g.drawLine(20, 280, 400, 280); // horizontal line
 g.drawLine(20, 280, 20, 20); // vertical line

To plot the values on the panel, the loop uses an offset since 0,0 is the top-left

corner of the panel. The loop accesses the ArrayList values and since the plot

locations require integers, the ArrayList was declared as holding Integers. They

are cast to integers when stored (shown later). The indicator used for the values

being plotted is a circle using fillOval(), and drawString() adds the value above the

97

Chapter 9 Main GUI and Data Display

plotted circle. The x-coordinate is updated, and the loop continues as shown

below. Outside the JComponent, the component is added to pWin. Notice the

semicolon on the closing brace for the JComponent.

int xCoord = 30; // starting x

 for(int i = 0; i < values.size(); i = i + 2) {

 g.setFont(FCFont);

 int y = values.get(i);

 g.setColor(Color.BLACK);

 int yCoord = 280 - y; // move down to 280 and up

 g.fillOval(xCoord, yCoord, 5, 5); // fahrenheit
 g.drawString(String.valueOf(y) + "F", xCoord, yCoord-5);

 y = values.get(i+1);

 yCoord = 280 - y; // move down to 300 and up
 g.fillOval(xCoord, yCoord, 5, 5); // plot celsius
 g.drawString(String.valueOf(y) + "C", xCoord, yCoord-5);

 xCoord = xCoord + 20;
 } // end of for loop

 } // end of paint
 }; // end of JComponent

 pWin.add(component); // add the JComponent

To invoke this process, the ButtonListener is modified to include a call to a

method in PlotWin that appends the new data entered and calculated to the

ArrayList and then calls the repaint() method.

 pWin.appendData(fahrenheit, celsius); // add to the ArrayList

The append() method.

 // adds new temperatures to the ArrayList, then calls repaint
 public void appendData(double F, double C) {

 values.add((int)F);
 values.add((int)C);
 pWin.repaint();
 }

98

Chapter 9 Main GUI and Data Display

The result is that each time a new value is entered on the main GUI and the

button is clicked, the Celsius temperature is computed, and both values are

added to the ArrayList, and the panel is repainted using the ArrayList values.

PlotWin Example Output

Line Charts

As shown in the section on paintComponents, drawing lines requires integer

values for a start-x, start-y, end-x, and end-y coordinate. In this example, the

JComponent is added in the constructor for a class with a frame to draw a blue

triangle.

 public class LineChart extends JComponent {

 private static JFrame lWin = new JFrame("Line Drawing");

 public LineChart() { // constructor

 lWin.setSize(350,300); // width, height

 lWin.getContentPane().setBackground(Color.WHITE);

 lWin.setLocation(500, 200);

 JComponent component = new JComponent() {

 public void paintComponent(Graphics g) {

 Font titleFont = new Font("Arial", Font.BOLD, 14);

99

Chapter 9 Main GUI and Data Display

 g.setFont(titleFont);

 g.setColor(Color.BLACK);

 g.drawString("Line Drawing Example", 75, 25);

 g.setColor(Color.BLUE);

 g.drawLine(130, 200, 130, 100); // x1, y1, x2, y2

 g.drawLine(130, 100, 230, 200);

 g.drawLine(230, 200, 130, 200);

 } // end of paint

 }; // end of JComponent

 lWin.add(component);

 lWin.setVisible(true);

 lWin.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 }

 public static void main(String[] args) {

 new LineChart();

 }

 }

Line Chart Example Output

Drawing line charts from data sets would be a bit more complex since each line

in the chart would require start-x, start-y, end-x, end-y specifiers. An algorithm

could be developed, but Java charting tools can be used to simplify the task.

100

Chapter 9 Main GUI and Data Display

Charting Tools

There are Java chart tools such as JFreeChart which is free to download (sample

from their website below). http://www.jfree.org/jfreechart/samples.html

JFreeChart Example

The JavaFX charts and methods in the javafx.scene.chart package are also

maturing into a comprehensive charting tool with extensive capability. A sample

is shown below.

javafx.scene.chart Example

http://www.jfree.org/jfreechart/samples.html

101

Chapter 10 – Dates, Time, Sound, and More

Chapter 10

Dates, Time, Sound, and More

Date and Time

The java.util package provides a date and time class for the current date and

time. The implementation includes declaring a Date object.

 Date myDate = new Date();

 System.out.println(myDate);

The output of this code is: Sun Jan 26 15:29:17 EST 2020

The java.time package also provides date and time classes including LocalTime,

LocalDateTime, a DateTimeFormatter, and others.

import java.time.LocalDateTime;

import java.time.format.DateTimeFormatter;

DateTimeFormatter df = DateTimeFormatter.ofPattern("MM/dd/yy");

LocalDateTime now = LocalDateTime.now();

System.out.println(now);

The output of this code is: 01/26/20

102

Chapter 10 – Dates, Time, Sound, and More

The DateTimeFormatter provides a variety of formats. Another example follows.

DateTimeFormatter df2 =

DateTimeFormatter.ofPattern("dd-MM-yyyy HH:mm:ss");

 LocalDateTime now2 = LocalDateTime.now();

 String formattedDate2 = df2.format(now2);

 System.out.println(formattedDate2);

The output of this code is: 26-01-2020 15:58:01

Calendar

To implement a calendar in Java, there are several available including the

DatePicker in Javafx. The following program displays a DatePicker() calendar

that allows the user to enter or select a date.

Ex. 10.1 – Display a User-selectable Calendar

public class DatePickerTest extends Application {

 public static void main(String[] args) {

 launch(args);

 }

 public void start(Stage stage) {

 VBox vbox = new VBox(20);

 Scene scene = new Scene(vbox, 400, 400);

 stage.setScene(scene);

 DatePicker dp = new DatePicker();

 vbox.getChildren().add(dp);

 stage.show();

 }

}

Ex. 10.1 Calendar Example Output

103

Chapter 10 – Dates, Time, Sound, and More

Playing Sound

An AudioInputStream and a clip resource are used to open a sound file and start

play. The code below assigns a wave file to soundFile, gets an input stream, a

clip resource, opens the file, and plays the sound.

 File soundFile = new File("myWaveFile.wav");

AudioInputStream audioInputStream =

AudioSystem.getAudioInputStream(soundFile.getAbsoluteFile());

 Clip clip = AudioSystem.getClip();

 clip.open(audioInputStream);

 clip.start();

The complete code with the try/catch for exception handling, and thread

handling while loops is shown below. Windows 10 issues not yet completely

resolved require the while loops. The program assumes that the *.wav file is

located in the java project folder (or jar file), otherwise a full path to the file

would be required.

 try {

 File sndFile = new File("myWaveFile.wav");

AudioInputStream audioInputStream =

AudioSystem.getAudioInputStream(sndFile.getAbsoluteFile());

 Clip clip = AudioSystem.getClip();

 clip.open(audioInputStream);

 clip.start();

 while (!clip.isRunning())

 try {

 Thread.sleep(10);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 while (clip.isRunning())

 try {

 Thread.sleep(10);

104

Chapter 10 – Dates, Time, Sound, and More

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 clip.close();

 }

 catch (UnsupportedAudioFileException e) {

 e.printStackTrace();

 }

Sound…Another Way

Another way to play sound is to assign the executable that will play the file and

the path to the sound file to be played to a string. The string is then passed to a

RunTime object which is assigned to a process. This works fine as long as there is

a player to select by code. The escapes are for the quotes on both portions of the

string.

String command = "\"C:/Program Files (x86)/Windows Media
Player/wmplayer.exe\"\"C:/myWaveFile.wav\"";

 Process p = Runtime.getRuntime().exec(command);

Launching a Browser, Mail, and File Handler

The Desktop class allows a Java application to launch associated applications

registered on the native desktop to handle a URI (Uniform Resource Identifier)

or a file. Supported operations include: launching the user-default browser to

show a specified URI; launching the user-default mail client with an optional

mailto URI; launching a registered application to open, edit or print a specified

file.

 if (Desktop.isDesktopSupported()) {

Desktop.getDesktop().browse(new URI("http://www.example.com"));
}

Available Desktop methods include: browse() which launches the system default

browser, edit() which launches the associated editor application and opens the

105

Chapter 10 – Dates, Time, Sound, and More

file, getDesktop() which returns the Desktop instance of the current browser

content, isDesktopSupported() which determines if the current desktop is

supported, mail() which opens the default mail client and opens a mail window,

open() which opens a file with the associated application, and print() which prints

a file in the desktop default printing application using the file’s associated

application’s print command.

HTML in Java

To mix fonts or colors within text, or for formatting such as multiple lines, HTML

can be used in Java. HTML formatting can be used in all Swing buttons, menu

items, labels, tool tips, and tabbed panes, as well as in components such as tables

that use labels to render text.

To specify that a component's text has HTML formatting, put the <html> tag at

the beginning of the text, then use any valid HTML in the remainder. Below is an

example of using HTML in a button's text.

JButton button1 =

new JButton(“<html><center><u>HTML in</u>
Java</center></html>”);

HTML in Java Example

Animation

Implementing animation in Java can be accomplished with a sequence of images

and the AWT Timer, or with the JavaFX 2.2 Animation class which simplifies

some of the operations. The code below shows the declaration of a timer with a

125 millisecond delay between ticks. At each tick of the timer, a TimerListener()

106

Chapter 10 – Dates, Time, Sound, and More

reacts to the clicks of the timer by calling the repaint() method. The

paintComponent() calls methods to update the images or whatever is being

painted.

 Timer myTimer = new Timer(125, new TimerListener());
 myTimer.start();

 class TimerListener implements ActionListener
 {
 public void actionPerformed(ActionEvent ae)
 {
 myPanel.repaint();

 }
 };

 JComponent component1 = new JComponent() {

 public void paintComponent(Graphics g) {

 super.paintComponent(g);

 // change the image, move x and y coordinates to

// animate a drawn entity, or resize something

 }
 }
 };

Repainting

A cautionary note about repainting: in Java, calling repaint() may not result in the

component or applet window being repainted. The interpreter will ignore calls to

repaint() if it can't process them as quickly as they are being called, or if some

other task is taking up most of its time.

1

Appendix A

Obtaining Eclipse

• Eclipse is available from Eclipse.org https://www.eclipse.org/

• Eclipse will run on most machines

• The JRE and JDK will be installed with Eclipse

• Eclipse will run fine on a flash drive for portability and access

• Copying the JRE to the flash drive simplifies running

Browse to the Eclipse web site shown here and select “Downloads”.

From the Downloads window shown select the appropriate version for your

computer. On most Windows machines, select the “Download 64 bit” button.

https://www.eclipse.org/

2

Appendix A

Download or save the zip file. (Eclipse will run fine on a flash drive and can be

installed there if you prefer.)

Once the zip file downloads, create a folder called “Eclipse” on your drive or flash

drive and place the zip file there, then right mouse click and “extract all” to that

folder. This will take a while…

The folders and files shown below are installed with Eclipse. The eclipse.exe file

launches the program.

3

Appendix A

The Java Development Kit

Installing the JDK in this directory with Eclipse will ensure that Eclipse will always

have (find) the JRE as well. The issues below usually have to do with Eclipse not

finding supporting files.

Launch Eclipse

If you launch Eclipse and get exit code 13 (shown below) or the “A Java Runtime

Environment…” error (shown below), Eclipse cannot find the JRE (Java Runtime

Environment) or jdk (Java Development Kit).

You may need to add the following code before the line that includes -vmargs in the

eclipse.ini file.

-vm

C:\Program Files\Java\jdk1.7.0_40-64\bin\javaw.exe

Note: The second line may be different depending upon version of the java jdk

installed in your machine, or if you are pointing it to a jdk on your flash drive.

• A Few important points to remember while configuring eclipse.ini file:

1. The Java File’s Path must be Relative Path or Absolute Path. It should not just

point to the Java Home Folder.

2. The -vm option and its path should be on a separate line.

3. The -vm option should be before -vmargs

4

Appendix A

Error…exit code=13

Error…Eclipse cannot find the JRE or JDK. Notice that it looked for it.

5

Appendix A

The eclipse.ini file is an initialization file that tells Eclipse where to find things like

the jdk and the location of your last used Workspace. To modify it, use a text editor

like Notepad

Be sure that java is installed on your machine. Check the Program Files directory.

• The jdk (Java Development Kit) is used by the Eclipse.

• If you install on a flash drive, it is easier to place a copy of the jdk in the

Eclipse folder on the flash drive and point the eclipse.ini file to that folder.

• You need to add the path to javaw.exe in the eclipse.ini file and it must be before

the line that includes –vmargs. Find the jdk on your machine or flash drive and

open bin to find javaw.exe. Use the full path for the eclipse.ini file.

-vm

E:\Eclipse\jdk-9.0.1\bin\javaw.exe

• The second line above will be different depending upon the version of the java

jdk installed and the directory (folder) where you placed the jdk.

Important point to remember:

• When you use the flash drive in a different machine, note the drive letter for the

flash drive. In the example above the drive letter is “E”, but may be “D” or

another letter depending on the machine. If this is the case, open the eclipse.ini

6

Appendix A

file and change the drive letter…just remember to change it back when you move

to another machine.

• Help Documentation is available:

http://www.eclipse.org/users/

http://www.eclipse.org/users/

1

Appendix B

Getting Started in Eclipse

When Eclipse is launched for the first time, a “Workspace” needs to be created. The

Workspace organizes programs and projects and adds supporting files. The next

time Eclipse starts, the Workspace will be shown as the default in this window.

Choose the “Browse” button, and decide where the program files will be stored.

After choosing a directory, select the “Make New Folder” button. Name the folder

(something like projects) and select “OK”.

Then, back in the “Workspace Launcher” window, select ‘OK’ again.

2

Appendix B

Eclipse will open to the “Welcome” window.

Close the “Welcome” window by clicking the “X” (top left).

The IDE will be displayed.

3

Appendix B

Creating a Project

Creating a “Project” and not a “File” is important for creating supporting files and

how the Workspace handles them. This will be clearer the next time Eclipse is

launched and the Workspace is selected. All of the projects in the Workspace and

their supporting file will be loaded automatically.

Select File | New | Java Project

The ‘Create a Java Project’ box will appear. Give the project a name, “HelloWorld” in

the example. As it is typed, the location box will add the text. Select the “Use project

folder…” radio button. Then click “Finish”.

4

Appendix B

The project will appear in the Package Explorer on the left side of the IDE. Expand it

by clicking the triangle.

The “src” and “JRE System Library” may be shown. Leave the project name

highlighted as shown here.

The first step to programming in Java is to create a “package” which will contain the

project files. With the project name still highlighted, click on the package icon.

5

Appendix B

The New Java Package window will appear. Give the package a name that is

relevant to the project (helloPackage shown here). Then click “Finish”.

The package will now appear in the project explorer. Be sure that the package is still

highlighted and select the class icon circled below.

The class creation window will appear.

6

Appendix B

Give the class the same name as the project name that was chosen earlier. In the screen

capture below, notice that the “Source Folder” name and the class name are the same.

Check the “public static void main(String[] args)” box, and click the “Finish” button.

The project is now created with a package and a class, and the main method has been

added to the program.

7

Appendix B

Add the output line of code shown below. The red circle containing the white “x” at the

margin indicates an error on the line (the semicolon at the end of the line is missing).

After adding the semicolon, run the program by clicking on the green circle with a white

triangle inside.

The ‘Save and Launch’ window will be displayed. Eclipse ensures that changes are

saved before the program runs.

8

Appendix B

HelloWorld.java is already selected so just click the ‘OK’ button, and the program will

run. That’s it.

Eclipse – Quick Start

• Launch Eclipse, select the workspace folder from the list, Eclipse will start

• Close the Welcome window by clicking on the ‘X’, and the IDE will open

• Select File > New > Java Project

– The ‘Create a Java Project’ box will popup

– Name the project, and the project will appear in the Package Explorer

• With the project name highlighted, add a Package by clicking the 'New Java

Package' icon, and give it a name.

• With the package name highlighted, add a class by clicking the ‘New Java Class’

icon, and the class creation window will popup.

• Give the class a name the same as the Source/Project name.

– Check the ‘public static void main(String[] args)’ box

• Click on the ‘Finish’ button

9

Appendix B

Creating a Second File – Modular Programming

Multiple files can be used to separate various parts of the program. By creating modules

(files), the program is easier to maintain and add functionality, portions can be easily

reused, and multiple engineers can work on various parts of a large program at the same

time.

The example creates a method in a second file, which is imported and used in the

program. The main program has been created “Modular_Program” in the

“ModularPackage”.

Next, with the package for the program highlighted in the Package Explorer (click on it),

select File | New | Class.

10

Appendix B

The Java Class window will appear. In the example, the class has been named

Second_File and the check box for public static void main(String[] args) is not checked.

11

Appendix B

Click the Finish button, and the file is added to the program as shown in the Package

Explorer.

There are now two tabs for the program in the IDE.

For the example, a method with an output statement is added to the second file.

12

Appendix B

The method is then called from main using the class name and dot operator.

By dragging the Second_File.java tab to the right of the edit panel, both files are shown

at once. The program ran and produced the expected output.

1

Appendix C

Weather Analysis Program in Java

Design and create a GUI program in Java for a meteorologist that calculates the wind chill factor

and cloud base altitude for inputs of temperature in Fahrenheit, wind speed in mph, and the

dew point in Fahrenheit, displays the data in the main interface, and a data display window, and

plots the temperature and wind chill values.

When the program begins, a window with three (3) buttons will allow the user to: Create

Account, Login, or Cancel. Account creation will be handled in a separate window using a class in

a separate module. Accounts require a unique username and a password of at least nine (9)

characters, with at least one digit, uppercase and lowercase letter. The program will handle

error messages and prompt for a password until a valid password is created. Valid account

information will be stored for retrieval for future login. The Login operation will verify the

account, and after successful Login, the main interface will be displayed and have data entry and

selection controls.

When data is entered from the keyboard and a compute button is clicked, the input will be

validated with error handling and dialogs. If data entered from the keyboard is invalid, an error

dialog message will be displayed, the output display windows will not be updated, and the

program will continue.

When valid data is entered, the computed results will be displayed in the main (GUI) data entry

window, and a column aligned and formatted data output window with titles, column headers,

units, commas separators for thousands, and decimal places. The computation results will also

be plotted in a separate window as noted below.

The user entry controls will accept input right-aligned, and there will be functionality to save the

data in the output window and access it with open file functionality. When open file is selected,

a file selection window will be displayed. File opening errors will be handled with exceptions and

dialog boxes.

The screen captures in this document are for reference only. The design and interface of your program do

not have to mirror the examples in this document in terms of appearance and controls used, but must

handle the operations.

Program Milestones

Milestone #1 – Initial GUI – Create Account/Login/Cancel

Obtain a copy of Eclipse and complete “Getting Started in Eclipse”. Create your project in Eclipse

and the package and class. Design and develop the Create Account/Login/Cancel interface. The

buttons should function and create the appropriate windows from classes. Full functionality of

2

Appendix C

create account and login is not required until the next milestone, but the interfaces should

appear when the buttons are clicked.

The window should contain at a minimum, “Create Account”, “Login”, and “Cancel” buttons.

Graphics enhance the interface for the user. Create the Design Document (Word/pdf) with

descriptions, screen captures, and code at the end and submit it as Milestone #1.

Milestone #2 – Create Account, Login, and Main Interface

Complete the account creation functionality for username and password, validating the

password for length (9 characters or more), an uppercase and lowercase letter, and a digit. The

program must handle invalid input. The window should contain instructions for the user.

Complete the username and password algorithm by saving the data and storing it in a file for

retrieval by the login function. (File handling is covered in chapter 6 of the text).

Complete the login operation and validation of the username and password for an account.

Design the main interface including the components (all functionality is not required at this

point). Consider how the program will handle various situations, and how will the user interact

with the program. Implement display of the main interface for the project after login occurs,

including any data entry controls and buttons appropriately positioned and aligned.

Clean up the appearance of the program including the various displays and window handling.

Windows should appear centered on the desktop, and not hide one another incorrectly.

Components should be aligned or centered with text explaining their functionality.

3

Appendix C

The design and development of the main interface should be nearly complete at this point.

Consider how the user will interact with the program and the order of operations.

Update the Design document with screen captures and explanations of operation, and submit

the Design Document with the code at the end and submit Milestone #2.

Milestone #3 – Functioning Keyboard Entry with Input Validation

Complete the main interface and keyboard entry functionality with error handling. Implement

the output on the main interface of the computed results from the keyboard entered values.

Functionality needed by other areas of the program should be in methods/classes. Error dialogs

can be used for bad input or when a wind chill is not valid, and the text in the interface should

reflect the issue.

Update the Design document and Present the documentation and running program in class (if

face-to-face instruction), and submit the Design Document with screen captures of functionality

and code at the end and submit it for Milestone #3.

4

Appendix C

Milestone #4 – Output Display for Keyboard Entry

Create the keyboard entry data output display window as a class, which will update each time
new values are entered on the main GUI. Formatting of the data is required. The data display
window will append the data each time new values are entered. Update the Design document
with screen captures and explanations of operation, and submit the Design Document with the
code as Milestone #4.

Milestone #5 – File Chooser, File Data Output, and Plotting

Implement the “File Save” operation to allow saving an analysis from the output window (a

JMenu on the window can be used with a “Save As” dialog). Implement the file open

functionality using a JFileChooser to view the saved data and handle exceptions. The data file

should have column headers and appear similar to the output display.

Implement the plot functionality for temperature and wind chill when values are entered on the

keyboard. A separate window is required, with a different color indicator and text for the two

values. Each time a data set is entered, and the compute button is clicked, the window should

be updated with the new data. A line, bar, or point chart can be implemented.

5

Appendix C

Update the Design document and prepare and present the documentation and program in class

(if face-to-face instruction). Prepare the Design Document for final submission and submit the

Design Document with screen captures of operations and code at the end as Milestone #5.

Final Document Submission

The final document should be polished and professional. It should have a cover sheet, centered

screen captures of consistent size, with proper use of fonts and spacing. The document should

represent a step-by-step journal of design and development of the milestones. The quality

should be such that it could be presented to a prospective employer as a work sample.

Equations

The equation for approximating the wind chill factor in North America is:

wc = 35.74 + 0.6215 Ta - 35.75V+0.16 + 0.4275 Ta V
+0.16

Where Ta is the air temperature in Fahrenheit

V is the wind speed in mph (consider pow(windSpeed, 0.16))

Also, wind chill temperature is defined only at or below 10.0◦ C (50.0 ◦ F), and wind

speeds above 4.8 kilometers per hour (3.0 mph). The program must check this.

The cloud base in feet above ground level is determined by the “temperature spread” which is

the difference between the temperature and the dew point, and is calculated:

cloudBase = temperature spread / 4.4 * 1000

1

Appendix D

Resource Links

Eclipse.org

https://www.eclipse.org/

Eclipse User Guide

https://help.eclipse.org/2019-09/index.jsp

Java Development Guidelines – Carnegie Melon University:

https://wiki.sei.cmu.edu/confluence/display/java/Java+Coding+Guidelines

Java Downloads and Information:

https://www.java.com/en/

JFreeChart charting tool:

http://www.jfree.org/jfreechart/samples.html

W3Schools Java Tutorial:

https://www.w3schools.com/java/default.asp

https://www.eclipse.org/
https://help.eclipse.org/2019-09/index.jsp
https://wiki.sei.cmu.edu/confluence/display/java/Java+Coding+Guidelines
https://www.java.com/en/
http://www.jfree.org/jfreechart/samples.html
https://www.w3schools.com/java/default.asp

2

Appendix D

1

Appendix E

Java Software Engineering Standards

Software Engineering standards provide a critically consistent way of designing and developing

computer based solutions that reduce errors, debugging time, maintenance costs, and ensure a

consistency across the organization. Virtually all businesses (including Microsoft, NASA, all

Defense Contractors, NOAA, et.al) impose standards similar to those listed here. The following

standards including style and techniques shall be utilized when writing programs. Note the

emphasis on technique and style in the quotes below.

“Superior coding techniques and programming practices are hallmarks of a professional

programmer.” – Bob Caron, Microsoft

“The purpose of the process is to develop source code that is traceable, verifiable,

consistent, and correctly implements the requirements.” – NASA Langley

Variable naming conventions

Variables shall be declared using descriptive names. A single letter or ambiguous

abbreviation is unacceptable unless local to a method when no ambiguity is introduced (see

below). Uppercasing shall be used and be consistent. Variables should be declared together

whenever possible. Declaring a variable when needed increases maintenance time.

Unacceptable: Acceptable:

 type p, val, t; type grossPay, salesValue, buttonWidth;

Inside a method, variables with local scope may be declared using an alias when no

ambiguity is created and no clarity is lost.

// This method returns the average of three arguments

public static double average(double x, double y, double z) {

 double avg = (x + y +z) / 3.0;

 return avg;

}

Constants

Constants are declared as static and final. Names for constants are all uppercase letters with

underscores between words. Constants must be initialized when declared.

public static final double MIN_HEIGHT = 1.0;

2

Appendix E

Method Naming Conventions

Methods shall have descriptive names that describe what they accomplish. A single letter or

ambiguous abbreviation is unacceptable. The uppercasing convention shall be used.

Unacceptable Acceptable

 cb(double t, double wc); computeCloudbase(double t, double wc);

Variables needed internally by the method shall be declared inside the method (local

variables). Temporary variables local to methods shall be used to store complex computed

values and as the return variable. Return statements should not contain computations, and

are only permitted in class member functions. This significantly enhances the ability to

debug and maintain a program. An example is shown below.

 // Returns the circumference of a circle or

 // zero if a negative or zero radius is received.

 public static double getCircumference(double r)

 {

 double c = 0;

 if (r > 0)

 c = 2 * pi * r;

 return c;

 }

White Space, Indentation, and Blank Lines

Spacing between operators and variables, and sections of code enhance the readability and
maintainability of the code as well as reducing the number of errors and debugging time.
Spaces shall be used between operators, literals, and variables, and between data types and
variables.

Unacceptable Acceptable

totalPrice=price+price*salesTax; totalPrice = price + price * salesTax;

for(int i=0;i<str.length();i++) for(int i = 0; i < str.length(); i++)

Indentation shall be used to emphasize grouping and align sections of code. Logical sections

of code shall be separated with blank lines to add clarity for scalability and maintainability.

Closing braces should be on separate lines.

3

Appendix E

Unacceptable

 public static int countWords(String str) {

int count = 1;

Boolean justSawOne = false;

for(int i = 0; i < str.length(); i++) {

char ch = str.charAt(i);

if(ch == ‘’ && justSawOne == false) {

justSawOne = true;

count++;

} else {

justSawOne = false; }

return count;

}

Acceptable:

 public static int countWords(String str) {

int count = 1;

Boolean justSawOne = false;

for(int I = 0; I < str.length(); i++) {

char ch = str.charAt(i);

if(ch == ‘’ && justSawOne == false) {

justSawOne = true;

count++;

}

else {

justSawOne = false;

}

return count;

}

Commenting Code

Comments shall be used to explain functions, computations, the reasoning behind design

choices, and the use of literals. Comments shall be used inline and tabbed right or above

code, but not to explain poorly written code. Comments describing functions shall be above

the function and left justified.

4

Appendix E

Classes and interfaces

The first letter of the name shall be capitalized, and the first letter of each additional word.

 public class MeteorWin()

There can be only one public class in a file, and the name of the file must match the name of

the public class. For example, a class declared as “public class MeteorWin()” must be in a

source code file named MeteorWin.java.

Program Layout/Logic

Programs shall be developed in a logical and organized manner. The order of operations

shall be easy to determine and follow by anyone viewing the code. Programming should be

deliberate and anticipate that another programmer will be reading the code in the future.

1

Appendix F

Multiple Panels and Layout Managers Example

Design and creation of an interface requires careful consideration, and a design sketch can be a

valuable tool for component placement and development. This example combines multiple

panels and layout managers for placement of the component areas and controls. The example

(sketch below) has a main frame, a main panel, and four (4) smaller panels for locating various

components and positioning. The four panels will be built with their components and then

added to the main panel.

Design Illustration

The main interface has five (5) panels as shown, and is implemented by creating a frame and the

main panel, and then the four smaller panels which are placed on the main panel. A border

layout was used and the background colors were added to the panels on the right to highlight

their locations.

Notice that without the color, we cannot see where one panel ends and another begins.

Also note the differences in the sizes of the panels. The panels will be sized to

accommodate the controls and components that will be located on them as things develop.

2

Appendix F

The border layout used in this example for the main panel provides North, South, East, and West

positioning. The default placement locates them outermost in their quadrants.

The code below declares the main frame, all of the panels (including a main panel), and the

labels. The constructor sets the sizes, provides the background colors, and then adds the sub-

panels to the main panel which is then added to the frame.

public class CombinedLayouts {

 JFrame mainFrame = new JFrame("Combined Layouts Example");

 JPanel mainPanel = new JPanel(); // declare the panels

 JPanel topPanel = new JPanel();

 JPanel leftPanel = new JPanel();

 JPanel rightPanel = new JPanel();

 JPanel bottomPanel = new JPanel();

 JLabel topPanelLabel = new JLabel("Top Panel"); // declare the labels

 JLabel leftPanelLabel = new JLabel("Left Panel");

 JLabel rightPanelLabel = new JLabel("Right Panel");

 JLabel bottomPanelLabel = new JLabel("Bottom Panel");

 public CombinedLayouts() { // constructor

 mainFrame.setSize(700, 700);

 // Set the specifics for each panel and add the label

 topPanel.setPreferredSize(new Dimension(700, 80)); // width, height

 topPanel.setBackground(new Color(153,102,255));

 topPanel.add(topPanelLabel);

 leftPanel.setPreferredSize(new Dimension(180, 200));

 leftPanel.setBackground(new Color(153,204,255));

 leftPanel.add(leftPanelLabel);

 rightPanel.setPreferredSize(new Dimension(380, 200));

 rightPanel.setBackground(new Color(153,153,102));

 rightPanel.add(rightPanelLabel);

 bottomPanel.setPreferredSize(new Dimension(700, 80));

 bottomPanel.setBackground(new Color(255,102,102));

 bottomPanel.add(bottomPanelLabel);

 mainPanel.add(topPanel, BorderLayout.NORTH); // add the panels

 mainPanel.add(leftPanel, BorderLayout.WEST);

 mainPanel.add(rightPanel, BorderLayout.EAST);

 mainPanel.add(bottomPanel, BorderLayout.SOUTH);

3

Appendix F

 // add the main panel to the Frame.

 mainFrame.add(mainPanel);

 mainFrame.setLocationRelativeTo(null);

 mainFrame.setVisible(true);

 mainFrame.setDefaultCloseOperation(1);

 } // end of constructor

Creating the individual panels should be done in methods to modularize the program and

separate the code. This will be added next. For now, the program runs and produces a

preliminary layout of the interface. The code in main to generate an instance of the class is

shown here.

 public static void main(String[] args) {

 CombinedLayouts CL = new CombinedLayouts();

 }

Main creates an instance of the Frame as “CL” and it can manipulate the Frame and any of its

members (attributes) or pass the CL object to a method that can do the same. To show this, the

code below changes the color of the bottom panel to blue from main after the object is created.

 public static void main(String[] args) {

 CombinedLayouts CL = new CombinedLayouts();

 CL.bottomPanel.setBackground(Color.BLUE);

 }

Next, the individual sections will be built and will be divided up (Step-wise Refinement) by

handling the panels separately in methods. This places code that is specific to a panel in a

separate area of the project (a method) which is then called by the constructor to “build” the

pieces individually before they are added to the main panel.

4

Appendix F

The top panel simply contains the title text, so that is a good place to start writing methods to

build the panels. The default font is used by the program, and should be changed to a larger font

and maybe a different style. The existing code for this panel (shown below) in the constructor

will be moved to the method, and replaced with a call to the method that will build the panel.

After declaring the method (note the name), and movement of the code from the constructor,

the declaration of the label for the top panel can also be moved to the method. The goal is to

locate as much code as possible that relates to creating this panel in the method.

A call to the method now replaces the code that was in the constructor.

After the label is created, a customized font can be assigned to it as shown here.

An italic Arial font is tried with a guess at the size. The result is shown below and although the

text is centered horizontally, it is not centered vertically.

5

Appendix F

There are several options for centering the label vertically. Since there is only one component,

adding an empty border allows setting pixel spacing around the label. In the code below, the

font has been changed and an empty border with top spacing has been added.

The details of the panel and the components are all within the method keeping them out of the

constructor, and with the exceptions of the color background, the top panel is now complete.

Note that at each step, running the program ensures that any errors introduced are corrected

immediately. Frequent testing can save hours of debugging and fixing minor errors.

6

Appendix F

The default layout for a JPanel is Flow Layout, and that was used on the top panel. A flow layout

simply allows components to flow left to right, then down and left to right in the order they are

added. For more complex panels, other layouts provide greater flexibility. Recall that the main

panel uses a Border Layout with North, South, East, and West quadrants, and each of the

smaller panels is positioned in one of those quadrants when added to the main panel.

The left panel will be implemented next.

The method for the left panel will be set up the same way as the top panel and the code will be

moved out of the constructor as before including the label declaration.

The call to the method is added to the constructor after the top panel.

The left panel requires two labels and an image and will use a Grid Bag Layout to position them.

This layout allows row and column placement using “constraints”. First the layout is assigned,

7

Appendix F

and constraints are declared. The insets put padding around the components and the weight for

x establishes the definitive columns. The anchors place the components within the cell of the

grid. When the labels are added to the panel, the second argument is the constraints.

Next the image for the left panel requires file handling and is placed a in a try block, and

positioning is accomplished with constraints and anchoring.

The insets used on the left panel space the components apart and they are fixed should the

window be resized. The results for the left panel code are shown here. The image is a screen

capture of the design sketch.

8

Appendix F

Again testing (running the program) is accomplished at each step to ensure things are working

and to determine where additional tweaking is needed. In addition, the sizes of the smaller

panels have not been changed and no changes have been made to the main panel. After the

individual panels are built and their components placed appropriately, then the overall program

interface will be worked. Any changes made to the main panel now would probably need to be

changed again once everything is finished.

The next panel (right panel) will be done the same way with a method that builds the panel and

is called from the constructor of the class after the left panel.

The choice of what layout to use for this or any other panel is subjective, and programmers tend

to use the layouts that they are more familiar with. The right panel has text and option lists. This

could be done top-down and a flow layout would work, or a grid. Left alignment would be

appealing (a design choice), and a flow layout would work with some tweaking.

Since the flow layout simply places the components on the panel left to right in the order that

they are added, the number of items or components that fit in a row is dependent upon the size

of the component and the width of the panel. As an example, in the code below the

components were just created and added to see what happens….where they end up.

9

Appendix F

A shown below, the components are centered horizontally and each row contains as many

components as it can fit. The design calls for a label, option list, label, option list configuration.

Tailoring the layout to the sketch comes next.

Java provides rigid areas and struts that can be used as spacers to positon components. A rigid

area can be a custom size and added to the panel to “push” other components around. It is

invisible and acts as a spacer. A strut is similar but has no height dimension.

10

Appendix F

In the code below, a rigid area has been declared and added to the right panel. The order in

which components are added to a flow layout determines their positioning. The rigid area is

added first, and the result is that it pushes all of the components down.

The first dimension, which is the width of the rigid area, is almost the width of the panel to

ensure that nothing fits on that row. The height determines the number of pixels that it will fill

vertically. The resulting display is shown below.

Additional rigid areas could be created and added between each of the components to force

them to the next row, and they would be centered by default.

The result of the added rigid areas is shown below

11

Appendix F

.

The horizontal alignment of the components is centered as a default. A grid layout would allow

them to be aligned by row columns using constraints and allow placement within each column

(EAST, WEST). However, the Flow Layout constructor can accept arguments for alignment that

apply to all of the components on the panel. The choices are left, right, center, leading, and

trailing, and two arguments for horizontal and vertical gaps between components.

As an example, the code has been modified to include the alignment, horizontal gap, and

vertical gap arguments when the layout is assigned to the panel. This eliminates the need for a

few of the rigid areas.

The result is left alignment of the components and vertical spacing as shown here. Some

adjustment in vertical positioning is needed, but the panel is complete.

12

Appendix F

The final panel (bottom panel) requires a label and two buttons and currently is not sized or

positioned in line with the design sketch. The buttons and labels must be moved to the far right

side of the panel and aligned. A rigid area could be created to push the bottom panel

components to the right, but it would fill the row height. Two rigid areas (one on each row)

would work easily, and allow a flow layout to be used. A method also needs to be created to

populate the bottom panel.

To better highlight the example, the color of the panel has been changed back. Recall that an

earlier example showed how to access the panel from main and change it to blue.

Another method for the bottom panel is created and added to the constructor.

The components for the panel are now moved to the method, and each time something is

moved the program is run to ensure that none of the changes introduces an issue.

Notice in the code above that the button sizes can be set. This helps with consistency when the

text on one button is shorter than the other, since the buttons will automatically size to fit the

text. Also note that the flow layout (at least for now) uses centering, and the hGap and vGap are

13

Appendix F

guesses. The running program now produces the window below. Note that the right panel has

been partially obscured and the tight panel rigid area will need to be adjusted.

Adding two rigid areas to the bottom panel can push the bottom panel components to the right.

If it seems more logical to add one to the main panel, doing that would cause an issue since the

bottom panel fills the SOUTH quadrant of the main panel. It would override the rigid area.

The code to set the labels and buttons in place on the bottom panel is shown below. The button

declarations have also been moved into the method from the class and Label1 has been given a

set size to push Label2 to the right for spacing.

There will be a few more changes for positioning, but the panel is complete.

14

Appendix F

Next the final sizing and positioning will be accomplished and trial and error can become

tedious. Listing all of the dimensions for the panels can make things a bit easier and much faster.

The current dimensions are as follows:

 Panel width height

 Main 700 700 defaults to the frame size

 Top 700 80

 Left 300 200

 Right 380 200

 Bottom 700 120

The height of the main panel is 700 pixels, and the combined heights for the left and right sides

are 600 pixels, so the height for the main frame is changed to 600.

The width of the right panel is 380 compared to 300 for the left panel, and when the colors are

turned off, the text and option lists will be a bit too far to the left compared to the design

sketch.

15

Appendix F

Comparing the design sketch while making minor changes to various dimensions, makes things

much easier and saves time.

The first change made was to shorten the height of the main frame, and the left and right sides

by 40 pixels. That forced an adjustment to the right panel spacing. The height of the topmost

rigid area of the right panel was easily adjusted to 60 to realign things,

In addition, the flow layout hGap value was changed to 100 to move everything to the right.

The results are more in line with the sketch.

16

Appendix F

To ensure that resizing the window by the user does not skew the panel locations, the main

frame method setResizable() is used and set to false.

The methods that set the background colors for the panels are now commented out (not

removed since they may be needed later), and the program is run again.

The last tweak would be to move the image and labels on the left panel toward the center. This

can be done by adding an empty border to the main panel or changing the insets that were used

on the left panel itself which is much easier. The insets “left” argument has been increased.

Again trial and error is used to get the right number of pixels for the left inset to position the

components appropriately. The results are shown below.

17

Appendix F

The interface is now complete as far as adding the components and positioning them.

Separating the interface areas into individual panels allows for the use of multiple layouts and

modularizing the program with methods organizing the development.

The class code after modularization is included below.

18

Appendix F

1

Appendix G

Index of Programming Examples

Example Page

Ex. 3.1 – Displaying Output in Java 16

Ex. 3.2 – Formatted Output 16

Ex. 3.3 – Line Feed 17

Ex. 3.4 – Escape Sequences 17

Ex. 3.4A – Formatted Output revisited 18

Ex. 3.5 – Getting Keyboard Input 20

Ex. 3.6 – Math Methods – Random Numbers 23

Ex. 3.7 – Random Number Ranges 24

Ex. 4.1 – Conditional Example with x = -1 26

Ex. 4.2 – A Simple Method called from main 30

Ex. 4.3 – Method in a Second File called from Main 32

Ex. 5.1 – Example Sketch of initial GUI 35

Ex. 5.2 – Initial Window Using a Dialog Box – showOptionDialog 36

Ex. 5.3 – Dialog Box Button Selection 37

Ex. 5.4 – A Simple Window 38

Ex. 5.5 – A Simple Window class 39

Ex. 5.6 – Create Account GUI 41

Ex. 5.7 – Two-button Three-frame Example 45

Ex. 6.1 – File Reading and Writing 51

Ex. 6.1A – File Writing and Reading with Exception Handling 53

Ex. 6.2 – File Reading and Writing using try-with-resources 54

Ex. 6.3 – Writing Numbers to a File and Then Reading 55

Ex. 6.4 – File Selection Using JFileChooser and

 Reading using StringBuilder 60

Ex. 6.5 – File Type Selection using FileNameExtensionFilter 61

2

Appendix G

Ex. 6.6 – File “Save AS” using showSaveDialog() 62

Ex. 7.1 – Indexing Strings 63

Ex. 7.2 – Copying a Character from a String 63

Ex. 7.3 – Concatenating Strings 64

Ex. 7.4 – The length() method with Strings 64

Ex. 7.5 – Character Testing a String 65

Ex. 7.6 – String Manipulation 66

Ex. 7.7 – String Tokenizing 67

Ex. 7.8 – ArrayLists 68

Ex. 7.9 – ArrayList of Doubles 69

Ex. 7.10 – Tab Delimited File into String 70

Ex. 8.1 – Frame Menu 77

Ex. 8.2 – Ten Buttons 79

Ex. 9.1 – Meteor Program Example – main 83

Ex. 9.2 – Meteor Program Example – MeteorWin() 84

Ex. 9.3 – Meteor Program Example – MeteorWin() Constructor 85

Ex. 9.4 – Meteor Program Example – ButtonListener 86

Ex. 9.4 – Meteor Program Example – ButtonListener (continued) 87

Ex. 9.5 – Data Display Window – Create on Program Start 88

Ex. 9.6 – the Data Display Window 89

Ex. 9.7 – Update Data Method 90

Ex. 9.7A – Update Data Method Corrected 91

Ex. 9.8 – ScrollPane Example 92

Ex. 9.9 – Bars on a JComponent 93

Ex. 9.9A – Bars on a JComponent – vertical 94

Ex. 9.10 – Temperature Conversion and Plot 95

Ex. 10.1 – Display a User-selectable Calendar 102

1

Index

A

acos(x) 23

Abstract Window Toolkit 34

ActionEvent 43

actionPerformed() 43

ActionListener, class 43

add(), method

 ArrayList 67

 ButtonGroup 76

 JFrame 37

 JMenu 77

 JMenuBar 77

 JPanel 76

addActionListener() 43

addWindowListener() 47

Agile Development 3

Agile Methodologies 4

Addition (+) operator

 defined 21

 concatenation 64

alignment, output 18

anchor 41

and operator && 27

Animation 105

appending data, files 50

append() 89

Arguments, passing 29

ArrayList 67

 declaring 68

 add() 68

 append() 97

 remove() 68

 set() 68

asin(x) 23

Assignment operator 18

atan(x) 23

AudioInputStream 104

AudioSystem 103

 getClip() 103

AWT Abstract Window Toolkit 34

axis labels 96

B

Backslash, displaying “\\” 17

bar chart 93

bool data type 19

Boolean type 28

 expressions 23

 logic 27

 return values 31

border

 text, dialog 36

 title, JFrame 41

 JPanel 43

BorderFactory 43

BorderLayout 40

BoxLayout 40

browse() 104

Browser, launch 104

BufferedImage 81

Button

 addActionListener() 43

 create 45

 labels 36

 listener 86

 options 45

 radio 75

2

Index

 setBackground() 80

 setForeground() 80

 setPreferredSize() 92

 text 45

ButtonGroup 76

 add() 77

ButtonListener, class 44

Byte 19

C

Calendar 102

calling methods 29

CardLayout 40

Cast 22

case-sensitive 19

Centering windows 86

Char data type 19

characters 63

 comparing 64

 copying 63

 escape 17

 finding in strings 63

 indexing 63

 newline 17

 tab 17

Charts

 bar 93

 flow 6

 line 98

 Tools 100

checkbutton component 76

Classes, example 39

Class Name, method call 32

ClickListener, class 43

Clip, audio 103

 close() 103

 open() 103

 start() 103

 isRunning() 103

Closing programs 47

Columnar data 18

Combo Box 75

Comments 15

Concatenation 64

Conditional statements 25

Constants 24

Copying

 characters 63

createEtchedBorder() 43

createTitledBorder() 43

D

data

 appending to files 50

 file design 56

 reading from files 49

 to text area 89

 writing to files 50

Data dictionary 56

data types 19

 bool, int, double, float 19

Date 101

DatePicker() 102

DateTimeFormatter 101

Decision structures 25

delimiter 52

Desktop 105

Design 5

3

Index

Development

 Agile 3

 cycle 3

 methodologies 4

 process 3

Dialog boxes

 error 36

 File, Save As 61

 Information box 36

 JFileChooser() 59

 showConfirmDialog() 36

 showInputDialog() 35

 showMessageDialog() 36

 showOpitonDialog() 36

 YES_NO_CANCEL 36

Dimension 92

display output 16

dispose() 44

Division 21

do-while loop 29

double 19

Double.parseDouble() 21

drawImage() 82

drawLine() 96

drawString() 93

Drop-down menus 73

E

Eclipse, IDE 9

else clause 25

enhanced for loop 28

Email, launching 105

Entry components

 TextEntry 34

 textField 44

Equal sign, assignment 18

Equivalence operator 27

Errors 11

 cost by phase 5

 dialogs 36

 OutOfBounds 61

 StackTrace 53

Escape sequences 17

Event listener 43

Exceptions 52

 FileNotFound 53

 Interrupted 103

 NumberFormat 21

 UnsupportedAudioFile 104

exec() 104

exponentiation 21

 example 22

F

File 49

 appending 50

 close() 50

 opening 49

 read 49

 read numeric data 54

 writing numeric data 54

 writing text 50

File selection dialog 59

File “Save As” dialog 60

FileNameExtensionFilter() 61

FileWriter class 50

fillOval() 96

fillRect() 93

4

Index

final, key word 24

float data type 19

floating point division 22

Flowchart 6

FlowLayout 40

font

 create 85

 setEchoChar() 42

 setFont() 85

for loop 28

for-each loop 67

format(), String 87

formatted output 16

format specifier 16

Frame component 38

G

get(i), ArrayList 97

getAbsoluteFile() 103

getAbsolutePath() 62

getAudioInputStream() 103

getClip() 103

getContentPane() 98

getDaysInMonth() 102

getDefaultToolKit() 82

getDesktop() 104

getImage() 82

getName() 61

getProperty() 60

getRunTime() 104

getSelectedFile() 60

getSelectedItem() 75

getSource() 76

getText() 44

Graphics object 93

Graphics2D 82

GridBagLayout 41

GridBagConstraints 41

GridBagLayout 40

gridheight 40

GridLayout 40

gridwidth 40

gridx 40

gridy 40

GroupLayout 40

GUI

 design 35

 dialog 36

 example 41

 positioning components 41

 programming 38

 sketch 35

H

hasNext() 27

hasNextDouble() 27

hasNextInt() 27

hasNextLine() 49

height, window 41

Hello World 11

HTML 105

hypot(x) 23

I

if-else 25

images 81

ImageIcon() 81

5

Index

imageIO.read() 81

Immutable 67

import

 class 19

 example 20

 package 19

 statements 19

 wildcard 45

indentation 28

indexes

 characters 61

 ArrayLists 68

 strings 63

Information dialog box 36

Insets 40

instance 38

integer 19

Integer.parseInt() 21

Interface Design 33

InterruptedException 103

ipadx, ipady 40

IPO document 3

isDesktopSupported() 104

isdigit() 64

isLetter() 64

isLowerCase() 64

isUpperCase() 64

isWhiteSpace() 64

Iterative Enhancement 69

J

Java 1

Java Foundation Classes 34

JavaFX 100

java.awt.event 43

java.awt.Toolkit 82

java.lang.Math 23

java.time 99

java.util.Scanner 19

javafx.scene.chart 100

javax.swing 34

JButton 41

JComboBox 73

JComponent 93

JDK 1

JFileChooser 59

JFrame 41

JFreeChart 100

JLabel 41

JOptionPane 36

JPanel 41

JPasswordField 42

JScrollPane 91

JTextField 41

JRE 1

Justification, output 18

JVM 1

K

keyboard input 19

key words 19

L

Label component 34

 example 41

Layouts 40

 multiple Appendix F

6

Index

layout manager 40

length() 64

Line drawing 98

Line Chart, JavaFX 100

Line, drawLine() 96

line feed 17

links Appendix D

listbox 34

LocalDateTime 100

log() 23

Logical operators 27

Long data type 19

Loops 28

M

Main method 29

Mathematical operators 21

Math Methods 23

Math.PI 23

Math.pow() 21

Math.random() 23

Math.round() 22

Math.toDegrees() 23

Math.toRadians() 23

menu button 36

Menu 34

 drop-down 75

 frame 77

Methods 29

 calling 30

 naming 31

 in other files/packages 31

Mixed-type expressions 22

Modulus (%) operator 21

Multi-file Programs 32

Multiplication (*) operator 21

N

New, keyword 19

Newline (\n) character 17

next() 20

nextDouble() 20

nextInt() 19

nextLine() 49

not operator “!” 27

Numbers

 floating point 19

 formatting 16

 random 23

NumbeFormatException 21

O

Objects 32

 exception 52

 file 51

 String 63

Object Activity Diagram 7

Object Oriented 7

Object Relationships 8

Object Sequence Diagram 8

open file 49

Open file dialog 59

Operators

 logical 27

 mathematical 21

 precedence of 22

 relational 27

7

Index

Option Lists 73

or operator || 27

Output 2

 displaying 16

 file 50

 formatting 16

 window 88

Override 47

P

Package, Java 10

Package Explorer 12

Package, import 19

Package, import methods 32

paintComponent() 93

Panel 34

 add() 41

 example 41

 repaint() 97

 setBackground() 96

 setBorder() 43

 setVisible() 38

Panel, Multiple Appendix F

Parameter 30

Passing arguments 29

PEMDAS 22

pi variable 23

Pie Chart 100

plotting 93

Precedence 22

Primitive data types 19

Programming Trends 2

print function 16

printf() 16

print formatted 16

println() 16

PrintWriter 49

Process 105

Program design 3

Pseudocode 5

public 29

Q

Quick-Start (Eclipse) 10

quotes, displaying \” 17

R

radians() 23

Radio buttons 75

 groups 76

random numbers 23

 ranges 24

Read, file 49

Read, keyboard input 19

Relational operators 27

remove(), ArrayLists 67

repaint() 95

replace(), strings 66

Requirements 4

return statements 29

right justification 18

rounding 22

Runtime 104

S

“Save As” dialog 61

8

Index

Scanner 19

Scene 102

Scroll bars 91

Scrum 4

Sequence Diagram 7

serialVersionUID 95

set(), ArrayList 67

setBackground() 79

setBorder() 43

setColor() 96

setCurrentDirectory() 59

setDefaultCloseOperation() 47

setDialogTitle() 60

setEchoChar() 42

setEnable() 79

setFilter() 61

setFont() 85

setForeground() 80

setHorizontalAlignment() 42

setIcon() 82

setJMenuBar() 77

setLocation() 89

setLocationRelativeTo() 42

setResizable() 42

setSize() 38

setText() 86

setTitle() 39

setVisible() 38

Short data type 19

showConfirmDialog() 36

showMessageDialog() 36

showOpenDialog() 60

showOptionDialog() 36

showSaveDialog() 61

Simple data types 19

sin(x) 23

Sprint 4

Software Development Process 72

Sound 103

SpringLayout 40

sqrt() 23

Stage 102

Standards Appendix E

static 29

static class 45

Stepwise Refinement 71

Storyboarding 34

String 63

 Array of 80

 concatenate 64

 conversion 21

 comparing 27

 modification 66

 StringBuilder() 67

 charAt() 63

 equals() 27

 format() 88

 length() 64

 replace() 66

 substring() 65

 toLowerCase() 66

 toUpperCase() 66

 split() 67

 trim() 66

 valueOf() 97

StringBuilder() 67

Subclass 44

Substring 65

9

Index

Subtraction (-) operator 21

super.paintComponent() 97

swing components 34

T

tab \t” 17

tan(x) 23

Text files 55

Thread.sleep 103

Time 99

Timer 103

 start() 106

 stop() 106

TimerListener 106

toFront() 89

toLower() 66

toUpper() 66

Toolkit 82

Tokenizing 67

Traceback 53

trim(), strings 66

Truncation 22

try/catch 52

try-with-resources 54

Types, data 19

 primitive 19

U

UML Unified Modeling Language 7

UML Diagram 7

UML Superstructure 7

UnsupportedAudioFileException104

URI, Uniform Resource Identifier104

useDelimiter() 52

User data entry 41

User interface 33

V

Validating Input 26

Variables 18

 Naming conventions 19

 Types 19

VBox 102

W

W3C 19

W3Schools, link Appendix D

wait() 46

Web browser, launch 104

weightx, weighty 40

While loop 28

width, window 41

Wildcard import 45

Window

 border title 41

 See set methods above

 chart 99

 Create Account 40

 frame 37

 image 81

 interface 72

 JFileChooser 60

 Login 40

 menu 77

 parent 35

WindowAdapter() 47

10

Index

WindowClosing() 47

WindowEvent 47

WindowListener 47

Workspace, Eclipse 10

World Wide Web Consortium 19

X

x axis, line 97

xCoord 97

Y

y axis, line 96

yCoord 97

